Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Boltzmann, Ludwig: Vorlesungen über Gastheorie. Bd. 2. Leipzig, 1898.

Bild:
<< vorherige Seite

IV. Abschnitt. [Gleich. 118]
berechtigt diese Annahme ist, wird am besten demjenigen klar,
der über Experimente zum directen Beweise der atomistischen
Constitution der Materie nachsinnt. Selbst in der nächsten
Umgebung der kleinsten in einem Gase suspendirten Körperchen
ist die Zahl der Moleküle schon so gross, dass es aussichtslos
erscheint, selbst in sehr kleinen Zeiten irgendwie eine beobacht-
bare Abweichung von der Limite zu hoffen, der sich die Er-
scheinungen bei unendlicher Zahl der Moleküle nähern.

Unter dieser Annahme müssen wir aber auch Ueberein-
stimmung mit der Erfahrung erhalten, wenn wir die Limite
berechnen, der sich die Gesetze der Erscheinungen bei stets
ins Unendliche wachsender Anzahl und abnehmender Grösse
der Moleküle nähern. Bei Berechnung der letzteren Limite
haben wir aber in der That wieder zwei Grössen, die unab-
hängig von einander beliebig klein gemacht werden können:
die Grösse der Volumelemente, und die Dimensionen der Mole-
küle, und wir können bei jeder gegebenen Kleinheit der ersteren
letztere noch so klein wählen, dass jedes Volumelement noch
sehr viele Moleküle enthält, deren Eigenschaften in gegebenen
engen Grenzen eingeschlossen sind.

Wenn man sich mit Kirchhoff unter den Ausdrücken
115) und 118) blosse Angaben des Grades einer Wahrscheinlich-
keit vorstellt, so kann man diese Ausdrücke allerdings auch
als Brüche oder sogar als sehr kleine Grössen auffassen; doch
verliert man hierbei sehr an Anschaulichkeit. Wir kommen
darauf noch am Schlusse dieses Buches in § 92 zurück.

§ 39. Betrachtung der Zusammenstösse zweier
Moleküle
.

Wir haben bisher die Wechselwirkung je zweier Moleküle
nicht berücksichtigt und haben noch die Bedingungen zu unter-
suchen, unter denen die zu Anfang unter den Molekülen be-
stehende Zustandsvertheilung auch durch die Zusammenstösse
der Moleküle nicht verändert wird. Zu diesem Zwecke müssen
wir die Wahrscheinlichkeit des Vorkommens von Gruppen
mehrerer Moleküle untersuchen. Wir wollen uns zunächst auf
den Fall beschränken, dass die gleichzeitige Wechselwirkung
von mehr als zwei Molekülen so ausserordentlich selten vor-
kommt, dass sie ganz einflusslos ist und daher nicht betrachtet

IV. Abschnitt. [Gleich. 118]
berechtigt diese Annahme ist, wird am besten demjenigen klar,
der über Experimente zum directen Beweise der atomistischen
Constitution der Materie nachsinnt. Selbst in der nächsten
Umgebung der kleinsten in einem Gase suspendirten Körperchen
ist die Zahl der Moleküle schon so gross, dass es aussichtslos
erscheint, selbst in sehr kleinen Zeiten irgendwie eine beobacht-
bare Abweichung von der Limite zu hoffen, der sich die Er-
scheinungen bei unendlicher Zahl der Moleküle nähern.

Unter dieser Annahme müssen wir aber auch Ueberein-
stimmung mit der Erfahrung erhalten, wenn wir die Limite
berechnen, der sich die Gesetze der Erscheinungen bei stets
ins Unendliche wachsender Anzahl und abnehmender Grösse
der Moleküle nähern. Bei Berechnung der letzteren Limite
haben wir aber in der That wieder zwei Grössen, die unab-
hängig von einander beliebig klein gemacht werden können:
die Grösse der Volumelemente, und die Dimensionen der Mole-
küle, und wir können bei jeder gegebenen Kleinheit der ersteren
letztere noch so klein wählen, dass jedes Volumelement noch
sehr viele Moleküle enthält, deren Eigenschaften in gegebenen
engen Grenzen eingeschlossen sind.

Wenn man sich mit Kirchhoff unter den Ausdrücken
115) und 118) blosse Angaben des Grades einer Wahrscheinlich-
keit vorstellt, so kann man diese Ausdrücke allerdings auch
als Brüche oder sogar als sehr kleine Grössen auffassen; doch
verliert man hierbei sehr an Anschaulichkeit. Wir kommen
darauf noch am Schlusse dieses Buches in § 92 zurück.

§ 39. Betrachtung der Zusammenstösse zweier
Moleküle
.

Wir haben bisher die Wechselwirkung je zweier Moleküle
nicht berücksichtigt und haben noch die Bedingungen zu unter-
suchen, unter denen die zu Anfang unter den Molekülen be-
stehende Zustandsvertheilung auch durch die Zusammenstösse
der Moleküle nicht verändert wird. Zu diesem Zwecke müssen
wir die Wahrscheinlichkeit des Vorkommens von Gruppen
mehrerer Moleküle untersuchen. Wir wollen uns zunächst auf
den Fall beschränken, dass die gleichzeitige Wechselwirkung
von mehr als zwei Molekülen so ausserordentlich selten vor-
kommt, dass sie ganz einflusslos ist und daher nicht betrachtet

<TEI>
  <text>
    <body>
      <div n="1">
        <div n="2">
          <p><pb facs="#f0130" n="112"/><fw place="top" type="header">IV. Abschnitt. [Gleich. 118]</fw><lb/>
berechtigt diese Annahme ist, wird am besten demjenigen klar,<lb/>
der über Experimente zum directen Beweise der atomistischen<lb/>
Constitution der Materie nachsinnt. Selbst in der nächsten<lb/>
Umgebung der kleinsten in einem Gase suspendirten Körperchen<lb/>
ist die Zahl der Moleküle schon so gross, dass es aussichtslos<lb/>
erscheint, selbst in sehr kleinen Zeiten irgendwie eine beobacht-<lb/>
bare Abweichung von der Limite zu hoffen, der sich die Er-<lb/>
scheinungen bei unendlicher Zahl der Moleküle nähern.</p><lb/>
          <p>Unter dieser Annahme müssen wir aber auch Ueberein-<lb/>
stimmung mit der Erfahrung erhalten, wenn wir die Limite<lb/>
berechnen, der sich die Gesetze der Erscheinungen bei stets<lb/>
ins Unendliche wachsender Anzahl und abnehmender Grösse<lb/>
der Moleküle nähern. Bei Berechnung der letzteren Limite<lb/>
haben wir aber in der That wieder zwei Grössen, die unab-<lb/>
hängig von einander beliebig klein gemacht werden können:<lb/>
die Grösse der Volumelemente, und die Dimensionen der Mole-<lb/>
küle, und wir können bei jeder gegebenen Kleinheit der ersteren<lb/>
letztere noch so klein wählen, dass jedes Volumelement noch<lb/>
sehr viele Moleküle enthält, deren Eigenschaften in gegebenen<lb/>
engen Grenzen eingeschlossen sind.</p><lb/>
          <p>Wenn man sich mit <hi rendition="#g">Kirchhoff</hi> unter den Ausdrücken<lb/>
115) und 118) blosse Angaben des Grades einer Wahrscheinlich-<lb/>
keit vorstellt, so kann man diese Ausdrücke allerdings auch<lb/>
als Brüche oder sogar als sehr kleine Grössen auffassen; doch<lb/>
verliert man hierbei sehr an Anschaulichkeit. Wir kommen<lb/>
darauf noch am Schlusse dieses Buches in § 92 zurück.</p>
        </div><lb/>
        <div n="2">
          <head>§ 39. <hi rendition="#g">Betrachtung der Zusammenstösse zweier<lb/>
Moleküle</hi>.</head><lb/>
          <p>Wir haben bisher die Wechselwirkung je zweier Moleküle<lb/>
nicht berücksichtigt und haben noch die Bedingungen zu unter-<lb/>
suchen, unter denen die zu Anfang unter den Molekülen be-<lb/>
stehende Zustandsvertheilung auch durch die Zusammenstösse<lb/>
der Moleküle nicht verändert wird. Zu diesem Zwecke müssen<lb/>
wir die Wahrscheinlichkeit des Vorkommens von Gruppen<lb/>
mehrerer Moleküle untersuchen. Wir wollen uns zunächst auf<lb/>
den Fall beschränken, dass die gleichzeitige Wechselwirkung<lb/>
von mehr als zwei Molekülen so ausserordentlich selten vor-<lb/>
kommt, dass sie ganz einflusslos ist und daher nicht betrachtet<lb/></p>
        </div>
      </div>
    </body>
  </text>
</TEI>
[112/0130] IV. Abschnitt. [Gleich. 118] berechtigt diese Annahme ist, wird am besten demjenigen klar, der über Experimente zum directen Beweise der atomistischen Constitution der Materie nachsinnt. Selbst in der nächsten Umgebung der kleinsten in einem Gase suspendirten Körperchen ist die Zahl der Moleküle schon so gross, dass es aussichtslos erscheint, selbst in sehr kleinen Zeiten irgendwie eine beobacht- bare Abweichung von der Limite zu hoffen, der sich die Er- scheinungen bei unendlicher Zahl der Moleküle nähern. Unter dieser Annahme müssen wir aber auch Ueberein- stimmung mit der Erfahrung erhalten, wenn wir die Limite berechnen, der sich die Gesetze der Erscheinungen bei stets ins Unendliche wachsender Anzahl und abnehmender Grösse der Moleküle nähern. Bei Berechnung der letzteren Limite haben wir aber in der That wieder zwei Grössen, die unab- hängig von einander beliebig klein gemacht werden können: die Grösse der Volumelemente, und die Dimensionen der Mole- küle, und wir können bei jeder gegebenen Kleinheit der ersteren letztere noch so klein wählen, dass jedes Volumelement noch sehr viele Moleküle enthält, deren Eigenschaften in gegebenen engen Grenzen eingeschlossen sind. Wenn man sich mit Kirchhoff unter den Ausdrücken 115) und 118) blosse Angaben des Grades einer Wahrscheinlich- keit vorstellt, so kann man diese Ausdrücke allerdings auch als Brüche oder sogar als sehr kleine Grössen auffassen; doch verliert man hierbei sehr an Anschaulichkeit. Wir kommen darauf noch am Schlusse dieses Buches in § 92 zurück. § 39. Betrachtung der Zusammenstösse zweier Moleküle. Wir haben bisher die Wechselwirkung je zweier Moleküle nicht berücksichtigt und haben noch die Bedingungen zu unter- suchen, unter denen die zu Anfang unter den Molekülen be- stehende Zustandsvertheilung auch durch die Zusammenstösse der Moleküle nicht verändert wird. Zu diesem Zwecke müssen wir die Wahrscheinlichkeit des Vorkommens von Gruppen mehrerer Moleküle untersuchen. Wir wollen uns zunächst auf den Fall beschränken, dass die gleichzeitige Wechselwirkung von mehr als zwei Molekülen so ausserordentlich selten vor- kommt, dass sie ganz einflusslos ist und daher nicht betrachtet

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
TCF (tokenisiert, serialisiert, lemmatisiert, normalisiert)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: http://www.deutschestextarchiv.de/boltzmann_gastheorie02_1898
URL zu dieser Seite: http://www.deutschestextarchiv.de/boltzmann_gastheorie02_1898/130
Zitationshilfe: Boltzmann, Ludwig: Vorlesungen über Gastheorie. Bd. 2. Leipzig, 1898, S. 112. In: Deutsches Textarchiv <http://www.deutschestextarchiv.de/boltzmann_gastheorie02_1898/130>, abgerufen am 17.02.2019.