Overview

The Situation
- Diachronic Text Corpora
- Collocation Profiling
- Diachronic Collocation Profiling

DiaCollo
- Requests & Parameters
- Profile, Diffs & Indices

Gory Details
- Corpus Indexing
- Co-occurrence Relations
- Scoring & Comparison Functions

Examples

Summary & Conclusion
The Situation: Diachronic Text Corpora

- heterogeneous text collections, especially with respect to *date of origin*
 - other partitionings potentially relevant too, e.g. by author, text class, etc.

- increasing number available for linguistic & humanities research, e.g.
 - *Deutsches Textarchiv (DTA)* (Geyken et al. 2011)
 - *Referenzkorpus Altdeutsch (DDD)* (Richling 2011)
 - *Corpus of Historical American English (COHA)* (Davies 2012)

- ...but even putatively “synchronic” corpora have a temporal extension, e.g.
 - *DWDS/ZEIT (“Kohl”)* (1946–2015)
 - *DDR Presseportal (“Ausreise”)* (1945–1993)

- should expose temporal effects of e.g. *semantic shift, discourse trends*

- problematic for conventional natural language processing tools
 - implicit assumptions of *homogeneity*
The Situation: Collocation Profiling

“You shall know a word by the company it keeps”
— J. R. Firth

Basic Idea

- **lookup** all candidate collocates \((w_2) \) occurring with the target term \((w_1) \)
- **rank** candidates by association score
 - “chance” co-occurrences with high-frequency items must be **filtered out**!
 - statistical methods require **large data sample**

What for?

- computational lexicography
 \((\text{Kilgarriff} \ & \ \text{Tugwell} \ 2002; \ \text{Didakowski} \ & \ \text{Geyken} \ 2013) \)
- neologism detection
- distributional semantics
- “text mining” / “distant reading”
 \((\text{Schütze} \ 1992; \ \text{Sahlgren} \ 2006) \)
 \((\text{Heyer} \ & \ \text{et al.} \ 2006; \ \text{Moretti} \ 2013) \)
Diachronic Collocation Profiling

The Problem: (temporal) heterogeneity
- conventional collocation extractors assume corpus homogeneity
- co-occurrence frequencies are computed only for word-pairs \((w_1, w_2)\)
- influence of occurrence date (and other document properties) is irrevocably lost

A Solution (sketch)
- represent terms as \(n\)-tuples of independent attributes, including occurrence date
 - alternative: “document” level co-occurrences over sparse TDF matrix
- partition corpus on-the-fly into user-specified intervals (“date slices”, “epochs”)
- collect independent slice-wise profiles into final result set

Advantages
- full support for diachronic axis
- variable query-level granularity
- flexible attribute selection
- multiple association scores

Drawbacks
- sparse data requires larger corpora
- computationally expensive
- large index size
- no syntactic relations (yet)
DiaCollo: Overview

General Background

- developed to aid CLARIN historians in analyzing discourse topic trends
- successfully applied to mid-sized and large corpora, including:
 - J. G. Dingler’s *Polytechnisches Journal* (1820–1931, 19K documents, 35M tokens)
 - *Deutsches Textarchiv* (1600–1900, 2.6K documents, 173M tokens)
 - *DWDS Zeitungen* (1946–2015, 10M documents, 4.3G tokens)

Implementation

- Perl API, command-line, & RESTful DDC/D* web-service plugin + GUI
- fast native indices over \(n \)-tuple inventories, equivalence classes, etc.
- scalable even in a high-load environment
 - no persistent server process is required
 - native index access via direct file I/O or \texttt{mmap()} system call
- various output & visualization formats, e.g. TSV, JSON, HTML, d3-cloud
DiaCollo: Requests & Parameters

- request-oriented RESTful service
- accepts user requests as set of \texttt{parameter=value} pairs
- parameter passing via URL query string or HTTP POST request
- common parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>query</td>
<td>target lemma(ta), regular expression, or DDC query</td>
</tr>
<tr>
<td>date</td>
<td>target date(s), interval, or regular expression</td>
</tr>
<tr>
<td>slice</td>
<td>aggregation granularity or “0” (zero) for a global profile</td>
</tr>
<tr>
<td>groupby</td>
<td>aggregation attributes with optional restrictions</td>
</tr>
<tr>
<td>score</td>
<td>score function for collocate ranking</td>
</tr>
<tr>
<td>kbest</td>
<td>maximum number of items to return per date-slice</td>
</tr>
<tr>
<td>diff</td>
<td>score aggregation function for diff profiles</td>
</tr>
<tr>
<td>global</td>
<td>request global profile pruning (vs. default slice-local pruning)</td>
</tr>
<tr>
<td>profile</td>
<td>profile type to be computed ({native,tdf,ddc} × {unary,diff})</td>
</tr>
<tr>
<td>format</td>
<td>output format or visualization mode</td>
</tr>
</tbody>
</table>

(Fielding 2000)
DiaCollo: Profiles, Diffs & Indices

Profiles & Diffs
- simple request → unary profile for target term(s)
 - filtered & projected to selected attribute(s)
 - trimmed to k-best collocates for target word(s)
 - aggregated into independent slice-wise sub-intervals
- diff request → comparison of two independent targets
 - highlights differences or similarities of target queries
 - can be used to compare different words
 - ...or different corpus subsets w.r.t. a given word

Indices & Attributes
- compile-time filtering of native indices: frequency thresholds, PoS-tags
- default index attributes: Lemma (l), Pos (p)
- finer-grained queries possible with TDF or DDC back-ends
- batteries not included: corpus preprocessing, analysis, & full-text search index
 - see e.g. Jurish (2003); Geyken & Hanneforth (2006); Jurish et al. (2014), ...
Gory Details
Corpus Indexing

Input Corpus

- abstract input class `DiaColloDB::Document`
 - currently supported sub-classes: DDCTabs, JSON, TCF, TEI

- input corpus must be **pre-tokenized** and **pre-annotated**
 - user-defined token-attribute selection
 - D* project uses attributes **Lemma** and **PoS** (“part-of-speech”)

- may include user-defined **break markers**
 - e.g. clause-, sentence-, page-, and/or paragraph-boundaries

Content Filtering

- not all corpus types are “interesting”
 - e.g. closed classes, *hapax legomena*, etc.

- Regular expression & frequency filters used to pre-prune corpus, e.g.
 - `-O wbad=REGEX`: surface form blacklist regex
 - `-O pgood=REGEX`: PoS whitelist regex
 - `-tfmin=FREQ`: minimum global term-tuple frequency
 - `-lfmin=FREQ`: minimum global lemma frequency
Native Co-occurrence Relation

(“collocations” profile type)

- “co-occurrence” \(\rightsquigarrow \) moving window over \(d_{\text{max}} \) content tokens
- window never crosses selected break boundaries
- for corpus \(C = s_1 \ldots s_{n_C} \) of break-units (“sentences”) \(s_i = x_{i1} \ldots x_{in_{si}} \)

\[
f_{12}(w, v) = \sum_{i=1}^{n_C} \sum_{j=1}^{n_{si}} \sum_{d=-d_{\text{max}}}^{d_{\text{max}}} 1[d \neq 0 \& x_{ij} = w \& x_{i(j+d)} = v]
\]

- independent “frequencies” \(f_1(w) \), \(N \) computed as marginals:

\[
f_1(w) = \sum_{v \in \mathcal{X}} f_{12}(w, v)
\]

\[
N = \sum_{w \in \mathcal{X}} f_1(w)
\]

- date component distinguishes index tuples \(x_{ij} \in \mathcal{X} \subseteq (\mathcal{A}^{n_A} \times \text{Date}) \)
- 2-level index maps “lexical” tuples (-date) to date-dependent frequencies

\[
I_{12} : \mathcal{A}^{n_A} \rightarrow (\text{Date} \rightarrow \mathbb{N})
\]

- attribute- and epoch-wise aggregation performed \textbf{on-the-fly} at runtime
- 2-pass lookup strategy required for accurate collocate frequencies \(f_2 \)
TDF Co-occurrence Relation

(“term × document matrix” profile type)

- “co-occurrence” \rightsquigarrow anywhere within the selected break unit (“document”)
- for corpus $C = d_1 \ldots d_{n_D}$ of “documents” $d_i = t_{i1} \ldots t_{in_{d_i}}$ with $\text{tdf}(t, d)$
 the frequency of term $t \in A^n_A$ in document d:
 $$f_{12}(w, v) = \sum_{i=1}^{n_D} \min\{\text{tdf}(w, d_i), \text{tdf}(v, d_i)\}$$

- occurrence date, bibliographic metadata stored as document properties

- index uses mmap() on sparse matrix PDL via PDL::CCS::Nd

- optimized lookup using Harwell-Boeing offset vectors

- coarse index granularity (no proximity constraints)

- supports Boolean query expressions and document metadata attributes
DDC Co-occurrence Relation

("ddc" profile type)

- “co-occurrence” as returned by a DDC query Q for slice interval I and grouping attributes G:

 \begin{align*}
 f_{12}(W, V) &= \text{COUNT}(Q \ #\text{SEP} \ #\text{BY}[\text{date}/I, G=2]) \\
 f_1(W) &= \text{COUNT}(<\text{KEYS}(Q \ #\text{BY}[\text{date}/I, G=1]) \ #\text{SEP}>) \ #\text{BY}[\text{date}/I, G=1] \\
 f_2(V) &= \text{COUNT}(<\text{KEYS}(Q \ #\text{BY}[\text{date}/I, G=2]) \ #\text{SEP}>) \ #\text{BY}[\text{date}/I, G=2]
 \end{align*}

- query subscripts ("match-IDs") identify collocant (=1) and collocates (=2)

- supports full range of the DDC query language, including:
 - user-specified break collections (e.g. sentence, file, paragraph)
 - break- and token-level Boolean query expressions
 - phrase- and proximity-queries
 - bibliographic metadata filters
 - server-side term expansion pipelines

- requires a running DDC server for the appropriate corpus

- most flexible back-end yet implemented

- comparatively slow (computationally expensive, resource-hungry)
Scoring Functions: Common Definitions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_1)</td>
<td>target tuple ("collocant") matching the user query request</td>
</tr>
<tr>
<td>(w_2)</td>
<td>collocate tuple matching the user groupby request</td>
</tr>
<tr>
<td>(N)</td>
<td>total number of co-occurrences in the profile relation</td>
</tr>
<tr>
<td>(f_{12})</td>
<td>frequency of the collocation pair: (f_{12}(w_1, w_2))</td>
</tr>
<tr>
<td>(f_1)</td>
<td>total frequency of the query term in the selected profile type: (f_1(w_1))</td>
</tr>
<tr>
<td>(f_2)</td>
<td>total frequency of the collocate term the selected profile type: (f_2(w_2))</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>smoothing constant, by default (\frac{1}{2})</td>
</tr>
</tbody>
</table>

- slice-local profiles \(p_{s,y} \)

\[
p_{s,y} : \mathcal{G} \rightarrow \mathbb{R} : w_2 \mapsto \text{score}_s(w_1, w_2)
\]

- trimmed by default to \(k \)-best (\(k \text{best} \)) collocates for independently by slice

\[
\hat{p}_{s,y} = p_{s,y} \upharpoonright \arg \max_{w_2}^{(k)} p_{s,y}(w_2)
\]

- "global" multi-profiles use a shared restriction set for all slices:

\[
p_{s,*}(w_2) = \sum_{y \in Y} p_{s,y}(w_2)
\]

\[
\hat{p}_{s,y} = p_{s,y} \upharpoonright \arg \max_{w_2}^{(k)} p_{s,*}(w_2)
\]
Scoring Functions: f (raw frequency)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>target tuple ("collocant") matching the user query request</td>
</tr>
<tr>
<td>w_2</td>
<td>collocate tuple matching the user groupby request</td>
</tr>
<tr>
<td>N</td>
<td>total number of co-occurrences in the profile relation</td>
</tr>
<tr>
<td>f_{12}</td>
<td>frequency of the collocation pair: $f_{12}(w_1, w_2)$</td>
</tr>
<tr>
<td>f_1</td>
<td>total frequency of the query term in the selected profile type: $f_1(w_1)$</td>
</tr>
<tr>
<td>f_2</td>
<td>total frequency of the collocate term the selected profile type: $f_2(w_2)$</td>
</tr>
<tr>
<td>ε</td>
<td>smoothing constant, by default $\frac{1}{2}$</td>
</tr>
</tbody>
</table>

$\text{score}_f(w_1, w_2) = f_{12}$

- immediately interpretable, but not very robust
- Zipf distribution leads to “lopsided” visualizations
- values may not comparable across slices (e.g. for non-balanced corpora)
- many false positives with high-frequency collocates
- **not** generally a good measure of collocate affinity
Scoring Functions: lf (log frequency)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>target tuple ("collocant") matching the user query request</td>
</tr>
<tr>
<td>w_2</td>
<td>collocate tuple matching the user groupby request</td>
</tr>
<tr>
<td>N</td>
<td>total number of co-occurrences in the profile relation</td>
</tr>
<tr>
<td>f_{12}</td>
<td>frequency of the collocation pair: $f_{12}(w_1, w_2)$</td>
</tr>
<tr>
<td>f_1</td>
<td>total frequency of the query term in the selected profile type: $f_1(w_1)$</td>
</tr>
<tr>
<td>f_2</td>
<td>total frequency of the collocate term the selected profile type: $f_2(w_2)$</td>
</tr>
<tr>
<td>ε</td>
<td>smoothing constant, by default $\frac{1}{2}$</td>
</tr>
</tbody>
</table>

$$\text{score}_{lf}(w_1, w_2) = \log_2(f_{12} + \varepsilon)$$

- better visual scaling than raw frequency
- otherwise shares raw frequency’s shortcomings
Scoring Functions: \(\text{mi (pointwise MI } \times \text{ log-frequency)} \)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_1)</td>
<td>target tuple (“collocant”) matching the user query request</td>
</tr>
<tr>
<td>(w_2)</td>
<td>collocate tuple matching the user groupby request</td>
</tr>
<tr>
<td>(N)</td>
<td>total number of co-occurrences in the profile relation</td>
</tr>
<tr>
<td>(f_{12})</td>
<td>frequency of the collocation pair: (f_{12}(w_1, w_2))</td>
</tr>
<tr>
<td>(f_1)</td>
<td>total frequency of the query term in the selected profile type: (f_1(w_1))</td>
</tr>
<tr>
<td>(f_2)</td>
<td>total frequency of the collocate term the selected profile type: (f_2(w_2))</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>smoothing constant, by default (\frac{1}{2})</td>
</tr>
</tbody>
</table>

\[
\text{score}_\text{mi}(w_1, w_2) = \log_2 \frac{(f_{12} + \varepsilon) \times (N + \varepsilon)}{(f_1 + \varepsilon) \times (f_2 + \varepsilon)} \times \log_2 (f_{12} + \varepsilon)
\]

- used by first version of Sketch Engine
 (Kilgarriff et al. 2004)
- PMI gives code-length change for (optimal) joint vs. independent encodings
- PMI alone is very sensitive to low-frequency items (\(\leadsto \) longer codes)
 - post-hoc workaround: include log-frequency coefficient
- some preference for low-frequency collocates remains
Scoring Functions: ll (log-likelihood)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>target tuple ("collocant") matching the user query request</td>
</tr>
<tr>
<td>w_2</td>
<td>collocate tuple matching the user groupby request</td>
</tr>
<tr>
<td>N</td>
<td>total number of co-occurrences in the profile relation</td>
</tr>
<tr>
<td>f_{12}</td>
<td>frequency of the collocation pair: $f_{12}(w_1, w_2)$</td>
</tr>
<tr>
<td>f_1</td>
<td>total frequency of the query term in the selected profile type: $f_1(w_1)$</td>
</tr>
<tr>
<td>f_2</td>
<td>total frequency of the collocate term in the selected profile type: $f_2(w_2)$</td>
</tr>
<tr>
<td>ε</td>
<td>smoothing constant, by default $\frac{1}{2}$</td>
</tr>
</tbody>
</table>

$$\text{score}_{ll}(w_1, w_2) = \text{sgn}(f_{12}|f_1, f_2) \times \log(1 + \log \lambda)$$

- 1-sided variant of the binomial log likelihood ratio \((Dunning 1993; Evert 2008) \)
 - only “attracting” collocate pairs are assigned positive values
- null hypothesis filters out “uninteresting” high-frequency collocates
- very sensitive to fixed & formulaic expressions \Rightarrow poor visual scaling
 - workaround: report & scale using $\log(1 + \log \lambda)$ rather than “pure” $\log \lambda$
Scoring Functions: ld (log-Dice coefficient)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_1)</td>
<td>target tuple (“collocant”) matching the user query request</td>
</tr>
<tr>
<td>(w_2)</td>
<td>collocate tuple matching the user groupby request</td>
</tr>
<tr>
<td>(N)</td>
<td>total number of co-occurrences in the profile relation</td>
</tr>
<tr>
<td>(f_{12})</td>
<td>frequency of the collocation pair: (f_{12}(w_1, w_2))</td>
</tr>
<tr>
<td>(f_1)</td>
<td>total frequency of the query term in the selected profile type: (f_1(w_1))</td>
</tr>
<tr>
<td>(f_2)</td>
<td>total frequency of the collocate term the selected profile type: (f_2(w_2))</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>smoothing constant, by default (\frac{1}{2})</td>
</tr>
</tbody>
</table>

\[
\text{score}_{ld}(w_1, w_2) = 14 + \log_2 \frac{2(f_{12} + \varepsilon)}{(f_1 + \varepsilon) + (f_2 + \varepsilon)}
\]

- “lexicographer-friendly” association score
- less susceptible to low-frequency outliers than PMI × log-frequency product
- good filtering of “uninteresting” high-frequency collocates
- “intuitive” visual scaling (consistent with human perceptual givens)
- default score used by DiaCollo

(Rychlý 2008)
Diff Operations: Common Definitions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_a)</td>
<td>1st profile query (query, date, slice)</td>
</tr>
<tr>
<td>(q_b)</td>
<td>2nd profile query (bquery, bdate, bslice)</td>
</tr>
<tr>
<td>(p_a)</td>
<td>1st profile function (\text{profile}(q_a) : \mathcal{G} \to \mathbb{R} : w_2 \mapsto \text{score}a(w{1a}, w_2))</td>
</tr>
<tr>
<td>(p_b)</td>
<td>2nd profile function (\text{profile}(q_b) : \mathcal{G} \to \mathbb{R} : w_2 \mapsto \text{score}b(w{1b}, w_2))</td>
</tr>
<tr>
<td>(s_a)</td>
<td>1st score value operand given collocate (w_2): (s_a = p_a(w_2))</td>
</tr>
<tr>
<td>(s_b)</td>
<td>2nd score value operand given collocate (w_2): (s_b = p_b(w_2))</td>
</tr>
</tbody>
</table>

- comparison scores \(\text{diff}_d \) computed for independent slice profiles \(p_a, p_b \):
 \[
 \text{diff}_d(p_a, p_b) : \mathcal{G} \to \mathbb{R} : w_2 \mapsto p_a(w_2) \ominus_d p_b(w_2)
 \]

- various diff operations \(d \) act on only selected domain subsets:
 - \textit{pre-trimmed} operations
 \[
 \text{dom}(\hat{p}_a) \cup \text{dom}(\hat{p}_b)
 \]
 - \textit{restricted} operations
 \[
 \text{dom}(p_a) \cap \text{dom}(p_b)
 \]
 - \textit{untrimmed} operations
 \[
 \text{dom}(p_a) \cup \text{dom}(p_b)
 \]

- \(k \)-best collocates are selected by maximum diff score:
 \[
 p_{a \ominus_d b} : \mathcal{G} \to \mathbb{R} : w_2 \mapsto \text{diff}_d(p_a, p_b)
 \]
Diff Operations: diff (raw difference)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_a</td>
<td>1st profile query (query, date, slice)</td>
</tr>
<tr>
<td>q_b</td>
<td>2nd profile query (bquery, bdate, bslice)</td>
</tr>
<tr>
<td>p_a</td>
<td>1st profile function $\text{profile}(q_a) : G \rightarrow \mathbb{R} : w_2 \mapsto \text{score}a(w{1a}, w_2)$</td>
</tr>
<tr>
<td>p_b</td>
<td>2nd profile function $\text{profile}(q_b) : G \rightarrow \mathbb{R} : w_2 \mapsto \text{score}b(w{1b}, w_2)$</td>
</tr>
<tr>
<td>s_a</td>
<td>1st score value operand given collocate w_2: $s_a = p_a(w_2)$</td>
</tr>
<tr>
<td>s_b</td>
<td>2nd score value operand given collocate w_2: $s_b = p_b(w_2)$</td>
</tr>
</tbody>
</table>

\[s_{\text{a} \ominus \text{diff}} s_{\text{b}} := s_{\text{a}} - s_{\text{b}} \]

- pre-trimmed
- asymmetric
- selects collocates strongly associated only with q_a
Diff Operations: adiff (absolute difference)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_a</td>
<td>1st profile query ($query$, $date$, $slice$)</td>
</tr>
<tr>
<td>q_b</td>
<td>2nd profile query ($bquery$, $bdate$, $bslice$)</td>
</tr>
<tr>
<td>p_a</td>
<td>1st profile function $profile(q_a): \mathcal{G} \to \mathbb{R}: w_2 \mapsto score_a(w_{1a}, w_2)$</td>
</tr>
<tr>
<td>p_b</td>
<td>2nd profile function $profile(q_b): \mathcal{G} \to \mathbb{R}: w_2 \mapsto score_b(w_{1b}, w_2)$</td>
</tr>
<tr>
<td>s_a</td>
<td>1st score value operand given collocate w_2: $s_a = p_a(w_2)$</td>
</tr>
<tr>
<td>s_b</td>
<td>2nd score value operand given collocate w_2: $s_b = p_b(w_2)$</td>
</tr>
</tbody>
</table>

$s_a \ominus_{adiff} s_b \bowtie |s_a - s_b|$

- pre-trimmed
- symmetric
- selects based on $|s_a - s_b|$, but reports raw difference $s_a - s_b$
- returns most extreme differences among strong collocates of q_a and q_b
- sign of returned score indicates association preference for q_a (+) or q_b (−)
Diff Operations: max (maximum)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_a)</td>
<td>1st profile query (query, date, slice)</td>
</tr>
<tr>
<td>(q_b)</td>
<td>2nd profile query (bquery, bdate, bslice)</td>
</tr>
<tr>
<td>(p_a)</td>
<td>1st profile function (\text{profile}(q_a) : \mathcal{G} \to \mathbb{R} : w_2 \mapsto \text{score}a(w{1a}, w_2))</td>
</tr>
<tr>
<td>(p_b)</td>
<td>2nd profile function (\text{profile}(q_b) : \mathcal{G} \to \mathbb{R} : w_2 \mapsto \text{score}b(w{1b}, w_2))</td>
</tr>
<tr>
<td>(s_a)</td>
<td>1st score value operand given collocate (w_2): (s_a = p_a(w_2))</td>
</tr>
<tr>
<td>(s_b)</td>
<td>2nd score value operand given collocate (w_2): (s_b = p_b(w_2))</td>
</tr>
</tbody>
</table>

\[s_a \ominus_{\text{max}} s_b := \max\{ s_a, s_b \} \]

- pre-trimmed
- symmetric
- selects only stronger of the operand association scores
- potentially useful for discovering collocates deserving further investigation
Diff Operations: min (minimum)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_a</td>
<td>1st profile query (query, date, slice)</td>
</tr>
<tr>
<td>q_b</td>
<td>2nd profile query (bquery, bdate,(bslice)</td>
</tr>
<tr>
<td>p_a</td>
<td>1st profile function $\text{profile}(q_a) : G \rightarrow \mathbb{R} : w_2 \mapsto \text{score}a(w{1a}, w_2)$</td>
</tr>
<tr>
<td>p_b</td>
<td>2nd profile function $\text{profile}(q_b) : G \rightarrow \mathbb{R} : w_2 \mapsto \text{score}b(w{1b}, w_2)$</td>
</tr>
<tr>
<td>s_a</td>
<td>1st score value operand given collocate w_2: $s_a = p_a(w_2)$</td>
</tr>
<tr>
<td>s_b</td>
<td>2nd score value operand given collocate w_2: $s_b = p_b(w_2)$</td>
</tr>
</tbody>
</table>

\[s_a \ominus_{\text{min}} s_b := \min\{s_a, s_b\} \]

- restricted
- symmetric
- selects only weaker of the operand association scores
- high scores indicate similar strong association preferences
- very sensitive to sparse data problems (missing data \leadsto zeroes)
Diff Operations: avg (arithmetic average)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_a</td>
<td>1st profile query (query, date, slice)</td>
</tr>
<tr>
<td>q_b</td>
<td>2nd profile query (bquery, bdate, bslice)</td>
</tr>
<tr>
<td>p_a</td>
<td>1st profile function $\text{profile}(q_a): \mathcal{G} \rightarrow \mathbb{R}: w_2 \mapsto \text{score}a(w{1a}, w_2)$</td>
</tr>
<tr>
<td>p_b</td>
<td>2nd profile function $\text{profile}(q_b): \mathcal{G} \rightarrow \mathbb{R}: w_2 \mapsto \text{score}b(w{1b}, w_2)$</td>
</tr>
<tr>
<td>s_a</td>
<td>1st score value operand given collocate w_2: $s_a = p_a(w_2)$</td>
</tr>
<tr>
<td>s_b</td>
<td>2nd score value operand given collocate w_2: $s_b = p_b(w_2)$</td>
</tr>
</tbody>
</table>

$s_a \ominus_{\text{avg}} s_b := \frac{s_a + s_b}{2}$

- restricted
- symmetric
- selects strong associations for either q_a or q_b, preferring shared associations
- *not* very sensitive to non-uniform operand values
 - high scores do not necessarily indicate similar collocation behavior
Diff Operations: havg (harmonic average)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_a)</td>
<td>1st profile query (query, date, slice)</td>
</tr>
<tr>
<td>(q_b)</td>
<td>2nd profile query (bquery, bdate, bslice)</td>
</tr>
<tr>
<td>(p_a)</td>
<td>1st profile function (\text{profile}(q_a) : \mathcal{G} \rightarrow \mathbb{R} : w_2 \mapsto \text{score}a(w{1a}, w_2))</td>
</tr>
<tr>
<td>(p_b)</td>
<td>2nd profile function (\text{profile}(q_b) : \mathcal{G} \rightarrow \mathbb{R} : w_2 \mapsto \text{score}b(w{1b}, w_2))</td>
</tr>
<tr>
<td>(s_a)</td>
<td>1st score value operand given collocate (w_2): (s_a = p_a(w_2))</td>
</tr>
<tr>
<td>(s_b)</td>
<td>2nd score value operand given collocate (w_2): (s_b = p_b(w_2))</td>
</tr>
</tbody>
</table>

\[s_a \ominus_{\text{havg}} s_b :\approx \frac{2s_as_b}{s_a+s_b} \]

- restricted
- symmetric
- selects uniformly strong associations for both \(q_a\) and \(q_b\)
- to avoid singularities, actually computed as:

\[
\text{havg}(s_a, s_b) := \begin{cases}
0 & \text{if } s_a \leq 0 \text{ or } s_b \leq 0 \\
\frac{2s_as_b}{s_a+s_b} & \text{otherwise}
\end{cases}
\]

\[
s_a \ominus_{\text{havg}} s_b := \text{avg}(\text{havg}(s_a, s_b), \text{avg}(s_a, s_b))
\]
Examples
Example 1: Newsworthy Crises

‘Krise’ in DIE ZEIT (west) and Neues Deutschland (east)

http://kaskade.dwds.de/dstar/zeit/diacollo/?q=Krise&d=1950:2015&gb=1,p%3DNE

1950–1959
- Berlin blockade aftermath

1960–1969
- anti-government protests & strikes in France

1970–1979
- Nixon & Brandt resignations; Iranian revolution

1980–1989
- Solidarność in Poland; Soviet war in Afghanistan; Schmidt coalition collapses

1990–1999
- wars in ex-Yugoslavia, Kosovo & Chechnya; financial crises in Asia & Mexico

2000–2009
- global financial crisis

2010–2014
- civil wars in Syria & the Ukraine; Greek bankruptcy

Compare:
- [Krise: DDR-PP Neues Deutschland]: 3-year slices, proper name collocates (NE)
- [Krise: DDR-PP Neues Deutschland]: 5-year slices, common noun collocates (NN)
Example 1: Selected Lemma-Clouds

1980–1989:
- Polen
- Europa
- NATO
- Afghanistan
- Sowjetunion
- AEG_Hausgeräte_GmbH
- Bonn
- Sozialdemokratische_Partei_Deutschlands

2010–2014:
- Kiew
- Spanien
- Griechenland
- Syrien
- Italien
- European_Union
- Merkel
- Deutschland
- Ukraine
- Krim
Example 2: Lexicography

‘autofrei’ (automobile-free)

http://kaskade.dwds.de/dstar/zeitungen/diacollo/?q=autofrei&ds=5&f=bub

Lexicography & Collocations

- collocation preferences correlate strongly with word meanings
- new senses (‘neosemantemes’) ⇒ new collocates
 - Maus (“mouse”): rodent vs. input device
 - Ampel (“traffic light”): traffic signal vs. political coalition

The case of autofrei (“automobile-free”)

- Duden: keinen Autoverkehr aufweisend (“lacking automobile traffic”)
- DWDS corpora reveal two sub-senses:
 - 1970–1989: ... by ordinance (⇔ Sonntag, Innenstadt)
 - 1990–present: ... voluntary (⇔ Wohnanlage, Siedlung)
Example 2: Selected Bubble-Charts

1985–1989

1990–1994
Example 3: Gender & Cultural Bias

‘Mann’ vs. ‘Frau’ in the Deutsches Textarchiv (1600–1900)

http://kaskade.dwds.de/dstar/dta/diacollo/?q=Mann&bq=Frau&d=1600:1899&ds=25&gb=1,p%3DADJA&f=cld&p=d2

Disclaimer

- historical corpus data can reveal persistent cultural biases
- linked collocation data does not reflect the opinions of the author or the BBAW!

Observations

- biological fact: schwangere Frau (only appears 1675–1724)
- fixed & formulaic expressions very prominent
 - gnädige Frau (masculine variant: gnädiger Herr)
 - Frau X geborene Y (birth- vs. married surname)
 - der gemeine Mann (masculine generic)
- pretty much exclusively cultural bias:
 - Mann ⇛ berühmt, ehrlich, gelehrt, tapfer, weise, …
 - Frau ⇛ betrübtt, lieb, schön, tugendreich, verwitwet, …
- differences grow less pronounced in late 18th & 19th centuries
Example 3: Selected Lemma-Clouds

1725–1749:
- lieb
- groß
- ander
- gnädig
-gemein
- gebären
- gelehrt
- weise

1825–1849:
- lieb
- deutsch
- grau
- gnädig
- edel
- jung
- groß
- ander
- schön
- gut
Example 4: What Makes a ‘Man’?

‘[ADJA] Mann’ in the Deutsches Textarchiv (1600–2000)

http://kaskade.dwds.de/dstar/dta/diacollo/?profile=diff-ddc&k=25&f=cloud ...

QUERY: "*=2 Mann" #has[textClass,Wissenschaft*]
~QUERY: "*=2 Mann" #has[textClass,Belletristik*]
GROUPBY: l,p=ADJA

Remarks

- ‘diff’ profile provides direct comparison of genres science vs. belles lettres
- uses DDC back-end for fine-grained data acquisition

Differences (diff=adiff)

- Science → berühmt, scharfsinnig, tüchtig (“famous, astute, capable”)
- Belles Lettres → brav, grau, rechtschaffen (“well-behaved, gray, righteous”)

Similarities (diff=min)

- groß, gelehrt, gemein, jung, alt (“great, learned, common, young, old”)
Example 4: Selected Lemma-Clouds

1700–1799
(diff=adiff)

1800–1899
(diff=adiff)
Example 5: Genealogy of Terminology

Habermas vs. Cassirer in the DWDS Kernkorpus

http://kaskade.dwds.de/dstar/kern/diacollo/?ds=0&bds=0&k=20&p=diff-tdf&f=cld&diff=adiff
QUERY: * #has[author,/Habermas/]
~QUERY: * #has[author,/Cassirer/]
GROUPBY: l,p=NN

Remarks
- uses TDF (term × document) matrix back-end for bibliographic meta-data queries
- sets slice=0 parameter to acquire date-independent profiles
- groupby clause selects only common noun lemmata (STTS tag NN)
- modest sample size (Habermas: 516k tokens, Cassirer: 130k tokens)
- Habermas himself openly acknowledges Cassirer’s influence

Differences (diff=adiff)
- Habermas ↦ Handeln, Gesellschaft, Öffentlichkeit, Meinung, Norm, . . .
- Cassirer ↦ Anschauung, Bestimmung, Bezeichnung, Erkenntnis, Sein, . . .

Similarities (diff=havg, diff=min)
- Analyse, Ausdruck, Begriff, Beziehung, Funktion, Sinn, Sprache, . . .
Example 5: Lemma-Clouds

differences
(diff=adiff)

similarities
(diff=havg)
Example 6: Pronominal Adverbs by Genre

‘[PAV]’ in aggregated DTA+DWDS (1600–2000)

http://kaskade.dwds.de/dstar/dta+dwds/diacollo/?p=diff-ddc&k=50&f=cld&G=1 ...
QUERY: $p=PAV=2$ #has[textClass, Wissenschaft*]
∼QUERY: $p=PAV=2$ #has[textClass, Belletristik*]

Remarks
- ‘diff’ profile provides direct comparison of genres science vs. belles lettres
- uses DDC back-end for querying functional category

Observations
- divergent: differences grow more pronounced over time
- **Science**
 - hier- anaphorics ∼ hierbei, hieraus, hierzu (“hereby, out of which, to which”)
 - causal/logical ∼ demnach, infolgedessen, daher (“therefore”)
- **Belles Lettres**
 - fixed expression drunter [und] drüber (“higgledy-piggeldy, at sixes and sevens”)
 - spatial & temporal ∼ dahinter, worauf (“behind which, upon which”)
 - concessive & adversative ∼ dawider, trotzdem (“against which, despite which”)
Example 6: Selected Lemma-Clouds

1650–1699:

1950–1999:
Example 7: 400 Years of Potables

‘[GETRÄNK] trinken’ in aggregated DTA+DWDS (1600–2000)

http://kaskade.dwds.de/dstar/dta+dwds/diacollo/?d=1600%3A1999&ds=50&k=20&p=ddc&f=cld&g=1&G=1
QUERY: "(Getränk|gn-sub WITH $p=NN)=2 (trinken WITH $p=/VV[IP]/)" #FMIN 1

Remarks
- uses DDC back-end for fine-grained data acquisition
- uses GermaNet thesaurus-based lexical expansion for *Getränk* (“beverage”)
- considers only those target terms immediately preceding verb *trinken* (“to drink”)
- “global” profile uses shared target-set to avoid visual clutter

Observations
- near-constants: *Bier, Milch, Wasser, Wein* (“beer, milk, water, wine”)
- 1650–1750: *Tee, Kaffee, Schokolade* (“tea, coffee, chocolate”) appear
- 1800–1900: *Schnaps* displaces *Branntwein; Champagner* appears
- 1850–1900: *Alkohol* (“alcohol”) as category of beverages
- 1900–2000: *Kognak, Saft, Sekt, Whisky* (“cognac, juice, sparkling wine, whisky”)
Example 7: Time Series \((k = 10)\)

DiaCollo Profile

\[(\text{Getränk}\text{gn-sub WITH } p=\text{NN})=2 \text{ (trinken WITH } p=/\text{VV}[\text{IP}]\text{)}\] #FMIN 1

- Alkohol
- Bier
- Branntwein
- Kaffee
- Milch
- Schnaps
- Sekt
- Tee
- Sekt
- Wasser
- Wein
Summary & Conclusion

Diachronic Collocation Profiling
- diachronic text corpora
- conventional tools
- diachronic profiling

\[\leadsto \text{semantic shift, discourse trends} \]
\[\leadsto \text{implicit assumptions of homogeneity} \]
\[\leadsto \text{date-dependent lexemes} \]

DiaCollo
- on-the-fly corpus partitioning
- DDC/D* integration
- RESTful web service

\[\leadsto \text{arbitrary query granularity} \]
\[\leadsto \text{fine-grained queries, corpus KWIC links} \]
\[\leadsto \text{external API, online visualization} \]

Applications
- exploration & discovery
- analysis & investigation
- evaluation & assessment

\[\leadsto \text{large source collections} \]
\[\leadsto \text{data acquisition for hypothesis testing} \]
\[\leadsto \text{historical semantics, history of concepts, etc.} \]