Some Remarks on Text Data Visualization and Codec Transparency

Bryan Jurish
jurish@bbaw.de

VisiHu 2017: Visualisierungsprozesse in den Humanities
Universität Zürich
17th July, 2017
Overview

Preliminaries
- Full Disclosure
- Terminology: Data, Text, & Visualization

Remarks
- Pipelines, Parameters, & (visualization) Procedures
- Visualizations as Filters
- Lossiness, Compression, & ‘Universal’ Filters
- ‘Intuitivity’, Exploitation, & Coherence
- Co-operation & Codec Transparency

Summary
I am a computational linguist
- tinker of algorithms
- tweaker of data structures
- not a philosopher

(... but I played one as an undergraduate)
I am a computational linguist
- tinker of algorithms
- tweaker of data structures
- not a philosopher

…but I played one as an undergraduate

...I am also an incorrigible Platonist
- $\Box \exists x. x = \emptyset$
- formal (mathematical) objects really exist!
- good company:
Full Disclosure

- I am a computational linguist
 - tinker of algorithms
 - tweaker of data structures
 - not a philosopher

 (… but I played one as an undergraduate)

- … I am also an incorrigible Platonist
 - □∃x.x = ∅
 - formal (mathematical) objects really exist!

 good company:

- Please adjust your interpretative apparatus if and where required
 - to accommodate my bottomless naïveté, and/or
 - according to your own epistemological commitments (or lack thereof)
Terminology

Visualization
- an algorithmic procedure by which an underlying data source is transformed to graphical form for direct human consumption
 - e.g. as a network graph, tag cloud, motion chart, etc.

Text Data
- a (digital) text corpus, possibly including extralinguistic information such as bibliographic meta-data, document structure, etc.

Text Data Visualization
- a visualization procedure using a (digital) text corpus as its underlying data source (usually indirectly)

Visualization Pipeline
- a cascade of algorithmic procedures by which (raw) text data is prepared for and formatted by a particular visualization procedure, including any preprocessing and application-specific modeling
Remark 1: Pipelines *versus* Procedures

Facts
- *raw text data* itself does not directly support most visualization procedures
- each visualization procedure imposes *formal constraints* on its parameters

Claim
- (preprocessing) pipelines \(\not\sim \) (visualization) procedures
- “generic” visualization procedures cannot be clearly distinguished from the preprocessing machinery (“pipeline”) which supplies their input

Rhetoric
- **Q**: how does one visualize a flat list of unweighted terms as a network graph?
 A: *one doesn’t!* (at least not in any meaningful way)

- **Q**: why is Mike Bostock’s [D3.js](https://d3js.org) API so mind-bogglingly complex?
 A: *because it needs to be!* ("generic" visualization procedures are fictional)
Remark 2: Visualizations ~ Filters

- noisy channel model of communication

 (Shannon 1948)
Remark 2: Visualizations \sim Filters

- noisy channel model
 - “codec” = encoder \oplus decoder

(Shannon 1948)
Remark 2: Visualizations ~ Filters

- noisy channel model
 - “codec” = encoder ⊕ decoder
- text data visualization codec (naïve tinker’s version)

(Shannon 1948)
Remark 2: Visualizations ~ Filters

- noisy channel model
 - “codec” = encoder ⊕ decoder
- text data visualization codec (naïve tinker’s version) → not the whole story!
Remark 2: Visualizations \sim Filters

- **noisy channel model**
 - “codec” = encoder \oplus decoder
- **natural language is a lossy codec**

(Shannon 1948)

(Reedy 1979)
Remark 2: Visualizations \sim Filters

- noisy channel model
 - “codec” = encoder \oplus decoder
- natural language is a *lossy codec*
 (Shannon 1948)
- text data visualization is a (lossy) *filter*
 (Reddy 1979)
Remark 2: Visualizations \sim Filters

- noisy channel model
 - “codec” = encoder \oplus decoder
- natural language is a lossy codec
- text data visualization is a (lossy) filter \Rightarrow what about the decoder?

(Shannon 1948)

(Reedy 1979)
Remark 2: Visualizations \sim Filters

- noisy channel model
 - “codec” = encoder \oplus decoder
- natural language is a *lossy codec*
- text data visualization is a (lossy) *filter*
- reception (interpretation) is filtered too!

$Shannon$ 1948

$Reddy$ 1979

(transmission side)
Remark 3: Lossiness & ‘Universal’ Filters

Visualization Pipelines \leadsto Lossy Compression
- information is *lost* when messages are passed through the codec
 - usually by design
 - no lossless formal model of natural language available

‘Universal’ Filters
- as humans, we’re *already equipped with* a whole bevy of (lossy) filters:
 - linguistic
 - (minimal attachment, semantic priming)
 - perceptual
 - (motion detection, color sensitivity)
 - cognitive
 - (object independence, causal relations)
 - cultural
 - (common knowledge, conventional signs)

Lossiness \sim ‘Distance’
- lossy filters increase “reading distance”
- the communication channel was already fallible

(we already have the text-encoding) (yet) (Moretti 2013)
Remark 4: ‘Intuitivity’ ~ Exploitation

‘Intuitivity’

- ‘intuitive’ visualizations *exploit* users’ pre-existing (‘universal’) filters
 - perceptual \leadsto size, motion, color
 - cognitive \leadsto physical simulations, display “objects”
 - cultural \leadsto shared conventional signs

- reduced recipient processing load
 - “progressive disclosure” \leadsto conscious focus

Exploitation & Coherence

- successful exploitation \iff *coherence* of pipeline- & user-filters
 - all and only *relevant* information passes unchanged through both codecs
 - *relevance* depends on user’s individual research question
Remark 5: Co-operation \(\rightsquigarrow \) Transparency

Co-operation

“Make your contribution such as it is required, at the stage at which it occurs, by the accepted purpose or direction of the talk exchange in which you are engaged.”

— Grice (1975)

Codec Transparency

- no *perceptible* data loss (e.g. mp3, ogg audio codecs)
- visualization \(\rightsquigarrow \) no *apprehensible* (relevant) data loss

Visualization as (co-operative) Communication

- **Task**: maximize transparency \(\rightsquigarrow \) optimize for users’ common research goals
- **Challenges**:
 - research goals vary widely between users, projects
 - commonalities can be hard to identify and formally model
Summary

Visualization Procedures
- non-modular, interface constraints

Visualization Pipelines
- noisy-channel filters

‘Universal’ Filters
- recipient-internal

‘Intuitivity’
- exploitation of recipient filters

Co-operative Communication
- maximize codec transparency

(preprocessing pipelines)

(lossy, usually by design)

(perceptual, cognitive, cultural)

(relevance, coherence)

(minimize apprehensible loss)
Thank you for listening!

http://kaskade.dwds.de/~jurish/visihu2017/danke
References

