Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 2, Abt. 1. Leipzig, 1891.Achtzehnte Vorlesung. A1 und B, oder zwischen A1 und B1 -- oder aber sie werden als die"Hülfsbeziehungen" das Verschwinden resp. Nichtverschwinden von nur einem der Gebiete A, B selbst oder von seiner Negation aus- drücken. § 39. Die denkbaren Umfangsbeziehungen überhaupt und ihre Darstellung durch vier primitive (De Morgan's). Die möglichen Aussagen. über n Klassen und Peano's Anzahl derselben. Am bequemsten wird man sämtliche Umfangsbeziehungen aus- Für die Grund- und Elementarbeziehungen ist dies bereits in Nach Th. 24+) ist: Die Fortsetzung der Tafel ergibt sich leicht, wenn man hierin, Achtzehnte Vorlesung. A1 und B, oder zwischen A1 und B1 — oder aber sie werden als die„Hülfsbeziehungen“ das Verschwinden resp. Nichtverschwinden von nur einem der Gebiete A, B selbst oder von seiner Negation aus- drücken. § 39. Die denkbaren Umfangsbeziehungen überhaupt und ihre Darstellung durch vier primitive (De Morgan’s). Die möglichen Aussagen. über n Klassen und Peano’s Anzahl derselben. Am bequemsten wird man sämtliche Umfangsbeziehungen aus- Für die Grund- und Elementarbeziehungen ist dies bereits in Nach Th. 24+) ist: Die Fortsetzung der Tafel ergibt sich leicht, wenn man hierin, <TEI> <text> <body> <div n="1"> <div n="2"> <div n="3"> <p><pb facs="#f0160" n="136"/><fw place="top" type="header">Achtzehnte Vorlesung.</fw><lb/><hi rendition="#i">A</hi><hi rendition="#sub">1</hi> und <hi rendition="#i">B</hi>, oder zwischen <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> und <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> — oder aber sie werden als die<lb/> „Hülfsbeziehungen“ das Verschwinden resp. Nichtverschwinden von<lb/> nur einem der Gebiete <hi rendition="#i">A</hi>, <hi rendition="#i">B</hi> selbst oder von seiner Negation aus-<lb/> drücken.</p> </div><lb/> <div n="3"> <head>§ 39. <hi rendition="#b">Die denkbaren Umfangsbeziehungen überhaupt und ihre<lb/> Darstellung durch vier primitive (De <hi rendition="#g">Morgan’</hi>s). Die möglichen<lb/> Aussagen. über n Klassen und <hi rendition="#g">Peano’</hi>s Anzahl derselben.</hi></head><lb/> <p><hi rendition="#i">Am bequemsten</hi> wird man sämtliche Umfangsbeziehungen aus-<lb/> drücken durch die vier folgenden, welche „<hi rendition="#i">primitive</hi> Beziehungen“<lb/> heissen mögen:<lb/> XVI<hi rendition="#sup">0</hi>. <hi rendition="#i">a</hi> = {<hi rendition="#i">A B</hi> = 0}, <hi rendition="#i">c</hi> = {<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> = 0}, <hi rendition="#i">b</hi> = {<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> = 0}, <hi rendition="#i">l</hi> = {<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> = 0},<lb/> und deren Negationen:<lb/><hi rendition="#i">a</hi><hi rendition="#sub">1</hi> = {<hi rendition="#i">A B</hi> ≠ 0}, <hi rendition="#i">c</hi><hi rendition="#sub">1</hi> = {<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> ≠ 0}, <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> = {<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> ≠ 0}, <hi rendition="#i">l</hi><hi rendition="#sub">1</hi> = {<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> ≠ 0}.</p><lb/> <p>Für die Grund- und Elementarbeziehungen ist dies bereits in<lb/> § 36, Tafel IV<hi rendition="#sup">0</hi> wesentlich geleistet, und erhalten wir aus den dortigen<lb/> Formeln — durch Einsetzung der für die rechterhand stehenden Aus-<lb/> sagen geltenden Symbole — unmittelbar den Anfang der nächst-<lb/> folgenden Tafel, sofern wir nur eines berücksichtigen und zwar dieses:</p><lb/> <p>Nach Th. 24<hi rendition="#sub">+</hi>) ist:<lb/><hi rendition="#c">(<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> = 0) = (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> = 0) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> = 0)</hi><lb/> und wie hieraus durch beiderseitiges Negiren (Kontraposition) folgt auch:<lb/><hi rendition="#c">(<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> ≠ 0) = (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> ≠ 0) + (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> ≠ 0). —</hi><lb/> Ebenso ist aber auch ferner:<lb/><hi rendition="#c"><hi rendition="#i">h</hi> = (<hi rendition="#i">A</hi> = 0) = (<hi rendition="#i">A B</hi> + <hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> = 0) = (<hi rendition="#i">A B</hi> = 0) (<hi rendition="#i">A B</hi><hi rendition="#sub">1</hi> = 0)</hi><lb/> und analog:<lb/><hi rendition="#c"><hi rendition="#i">k</hi> = (<hi rendition="#i">B</hi> = 0) = (<hi rendition="#i">A B</hi> + <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> = 0) = (<hi rendition="#i">A B</hi> = 0) (<hi rendition="#i">A</hi><hi rendition="#sub">1</hi> <hi rendition="#i">B</hi> = 0).</hi><lb/> Sonach werden auch die Hülfsrelationen — zunächst <hi rendition="#i">h</hi>, <hi rendition="#i">k</hi> — sich in<lb/> Faktoren der obigen vier Formen zerspalten lassen.</p><lb/> <p>Die Fortsetzung der Tafel ergibt sich leicht, wenn man hierin,<lb/> sowie in IV<hi rendition="#sup">0</hi>, <hi rendition="#i">B</hi> durch <hi rendition="#i">B</hi><hi rendition="#sub">1</hi> oder (resp. und) <hi rendition="#i">A</hi> durch <hi rendition="#i">A</hi><hi rendition="#sub">1</hi> ersetzt und<lb/> dann wieder rechterhand für die Aussagen selbst die zur Abkürzung<lb/> für sie eingeführten Symbole schreibt.</p><lb/> </div> </div> </div> </body> </text> </TEI> [136/0160]
Achtzehnte Vorlesung.
A1 und B, oder zwischen A1 und B1 — oder aber sie werden als die
„Hülfsbeziehungen“ das Verschwinden resp. Nichtverschwinden von
nur einem der Gebiete A, B selbst oder von seiner Negation aus-
drücken.
§ 39. Die denkbaren Umfangsbeziehungen überhaupt und ihre
Darstellung durch vier primitive (De Morgan’s). Die möglichen
Aussagen. über n Klassen und Peano’s Anzahl derselben.
Am bequemsten wird man sämtliche Umfangsbeziehungen aus-
drücken durch die vier folgenden, welche „primitive Beziehungen“
heissen mögen:
XVI0. a = {A B = 0}, c = {A B1 = 0}, b = {A1 B = 0}, l = {A1 B1 = 0},
und deren Negationen:
a1 = {A B ≠ 0}, c1 = {A B1 ≠ 0}, b1 = {A1 B ≠ 0}, l1 = {A1 B1 ≠ 0}.
Für die Grund- und Elementarbeziehungen ist dies bereits in
§ 36, Tafel IV0 wesentlich geleistet, und erhalten wir aus den dortigen
Formeln — durch Einsetzung der für die rechterhand stehenden Aus-
sagen geltenden Symbole — unmittelbar den Anfang der nächst-
folgenden Tafel, sofern wir nur eines berücksichtigen und zwar dieses:
Nach Th. 24+) ist:
(A B1 + A1 B = 0) = (A B1 = 0) (A1 B = 0)
und wie hieraus durch beiderseitiges Negiren (Kontraposition) folgt auch:
(A B1 + A1 B ≠ 0) = (A B1 ≠ 0) + (A1 B ≠ 0). —
Ebenso ist aber auch ferner:
h = (A = 0) = (A B + A B1 = 0) = (A B = 0) (A B1 = 0)
und analog:
k = (B = 0) = (A B + A1 B = 0) = (A B = 0) (A1 B = 0).
Sonach werden auch die Hülfsrelationen — zunächst h, k — sich in
Faktoren der obigen vier Formen zerspalten lassen.
Die Fortsetzung der Tafel ergibt sich leicht, wenn man hierin,
sowie in IV0, B durch B1 oder (resp. und) A durch A1 ersetzt und
dann wieder rechterhand für die Aussagen selbst die zur Abkürzung
für sie eingeführten Symbole schreibt.
Suche im WerkInformationen zum Werk
Download dieses Werks
XML (TEI P5) ·
HTML ·
Text Metadaten zum WerkTEI-Header · CMDI · Dublin Core Ansichten dieser Seite
Voyant Tools
|
URL zu diesem Werk: | https://www.deutschestextarchiv.de/schroeder_logik0201_1891 |
URL zu dieser Seite: | https://www.deutschestextarchiv.de/schroeder_logik0201_1891/160 |
Zitationshilfe: | Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 2, Abt. 1. Leipzig, 1891, S. 136. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/schroeder_logik0201_1891/160>, abgerufen am 10.12.2023. |