Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Boltzmann, Ludwig: Vorlesungen über Gastheorie. Bd. 1. Leipzig, 1896.

Bild:
<< vorherige Seite

[Gleich. 96] § 14. Allgemeine Diffusion.
Radiometer übereinstimmend zeigen, für sehr verdünnte Gase
in der That zutrifft, sind doch so grosse Druckunterschiede,
wie sie aus jenen Formeln folgen würden, unzulässig.1) Es
sind dies also lauter Beweise für die Unexactheit aller dieser
Rechnungen.

In dem Falle der Diffusion, der uns jetzt beschäftigt, hat
O. E. Meyer den Widerspruch dadurch beseitigt, dass er der
hier berechneten Molekularbewegung, bei welcher N -- N1 Mole-
küle beider Gase mehr von oben nach unten als umgekehrt
in der Zeiteinheit durch die Flächeneinheit wandern, einen
gleichen aber entgegengesetzt gerichteten Strom des Gemisches
superponirt. Da im Gemische auf n + n1 Moleküle n Moleküle
der ersten Gasart und n1 Moleküle der zweiten Gasart ent-
fallen, so ist der Strom des Gemisches so zu denken, dass von
der ersten Gasart n (N1 -- N) / (n + n1), von der zweiten aber
n1 (N1 -- N) / (n + n1) Moleküle in der Zeiteinheit mehr von oben
nach unten als umgekehrt wandern. Daher wandern nach
dieser Superposition
[Formel 1] Moleküle der ersten Gasart mehr von oben nach unten als
umgekehrt und gleich viel Moleküle der zweiten Gasart wandern
in der entgegengesetzten Richtung. Der Diffusionscoefficient
ist also jetzt
[Formel 2] wo D1 und D2 die soeben gefundenen Werthe haben. Nach
diesen Formeln würde der Diffusionscoefficient von dem
Mischungsverhältnisse abhängen, also in den verschiedenen
Schichten des Gasgemisches nicht denselben Werth haben,
so dass für den stationären Zustand n und n1 nicht lineare
Functionen von z wären. Stefan2) hat nach anderen Prin-
cipien eine ebenfalls angenähert richtige Theorie der Diffusion
entwickelt, nach welcher der Diffusionscoefficient nicht vom
Mischungsverhältnisse abhängig wäre. Experimentell ist diese

1) Kirchhoff, Vorles. üb. Theorie der Wärme, herausgegeben von
Max Planck. Leipzig, B. G. Teubner, 1894. S. 210.
2) Wiener Sitzungsber. Bd. 65. S. 323. 1872.
Boltzmann, Gastheorie. 7

[Gleich. 96] § 14. Allgemeine Diffusion.
Radiometer übereinstimmend zeigen, für sehr verdünnte Gase
in der That zutrifft, sind doch so grosse Druckunterschiede,
wie sie aus jenen Formeln folgen würden, unzulässig.1) Es
sind dies also lauter Beweise für die Unexactheit aller dieser
Rechnungen.

In dem Falle der Diffusion, der uns jetzt beschäftigt, hat
O. E. Meyer den Widerspruch dadurch beseitigt, dass er der
hier berechneten Molekularbewegung, bei welcher N — N1 Mole-
küle beider Gase mehr von oben nach unten als umgekehrt
in der Zeiteinheit durch die Flächeneinheit wandern, einen
gleichen aber entgegengesetzt gerichteten Strom des Gemisches
superponirt. Da im Gemische auf n + n1 Moleküle n Moleküle
der ersten Gasart und n1 Moleküle der zweiten Gasart ent-
fallen, so ist der Strom des Gemisches so zu denken, dass von
der ersten Gasart n (N1N) / (n + n1), von der zweiten aber
n1 (N1N) / (n + n1) Moleküle in der Zeiteinheit mehr von oben
nach unten als umgekehrt wandern. Daher wandern nach
dieser Superposition
[Formel 1] Moleküle der ersten Gasart mehr von oben nach unten als
umgekehrt und gleich viel Moleküle der zweiten Gasart wandern
in der entgegengesetzten Richtung. Der Diffusionscoëfficient
ist also jetzt
[Formel 2] wo D1 und D2 die soeben gefundenen Werthe haben. Nach
diesen Formeln würde der Diffusionscoëfficient von dem
Mischungsverhältnisse abhängen, also in den verschiedenen
Schichten des Gasgemisches nicht denselben Werth haben,
so dass für den stationären Zustand n und n1 nicht lineare
Functionen von z wären. Stefan2) hat nach anderen Prin-
cipien eine ebenfalls angenähert richtige Theorie der Diffusion
entwickelt, nach welcher der Diffusionscoëfficient nicht vom
Mischungsverhältnisse abhängig wäre. Experimentell ist diese

1) Kirchhoff, Vorles. üb. Theorie der Wärme, herausgegeben von
Max Planck. Leipzig, B. G. Teubner, 1894. S. 210.
2) Wiener Sitzungsber. Bd. 65. S. 323. 1872.
Boltzmann, Gastheorie. 7
<TEI>
  <text>
    <body>
      <div n="1">
        <div n="2">
          <p><pb facs="#f0111" n="97"/><fw place="top" type="header">[Gleich. 96] § 14. Allgemeine Diffusion.</fw><lb/>
Radiometer übereinstimmend zeigen, für sehr verdünnte Gase<lb/>
in der That zutrifft, sind doch so grosse Druckunterschiede,<lb/>
wie sie aus jenen Formeln folgen würden, unzulässig.<note place="foot" n="1)"><hi rendition="#g">Kirchhoff</hi>, Vorles. üb. Theorie der Wärme, herausgegeben von<lb/><hi rendition="#g">Max Planck</hi>. Leipzig, B. G. Teubner, 1894. S. 210.</note> Es<lb/>
sind dies also lauter Beweise für die Unexactheit aller dieser<lb/>
Rechnungen.</p><lb/>
          <p>In dem Falle der Diffusion, der uns jetzt beschäftigt, hat<lb/>
O. E. <hi rendition="#g">Meyer</hi> den Widerspruch dadurch beseitigt, dass er der<lb/>
hier berechneten Molekularbewegung, bei welcher <hi rendition="#fr">N &#x2014; N</hi><hi rendition="#sub">1</hi> Mole-<lb/>
küle beider Gase mehr von oben nach unten als umgekehrt<lb/>
in der Zeiteinheit durch die Flächeneinheit wandern, einen<lb/>
gleichen aber entgegengesetzt gerichteten Strom des Gemisches<lb/>
superponirt. Da im Gemische auf <hi rendition="#i">n</hi> + <hi rendition="#i">n</hi><hi rendition="#sub">1</hi> Moleküle <hi rendition="#i">n</hi> Moleküle<lb/>
der ersten Gasart und <hi rendition="#i">n</hi><hi rendition="#sub">1</hi> Moleküle der zweiten Gasart ent-<lb/>
fallen, so ist der Strom des Gemisches so zu denken, dass von<lb/>
der ersten Gasart <hi rendition="#i">n</hi> (<hi rendition="#fr">N</hi><hi rendition="#sub">1</hi> &#x2014; <hi rendition="#fr">N</hi>) / (<hi rendition="#i">n</hi> + <hi rendition="#i">n</hi><hi rendition="#sub">1</hi>), von der zweiten aber<lb/><hi rendition="#i">n</hi><hi rendition="#sub">1</hi> (<hi rendition="#fr">N</hi><hi rendition="#sub">1</hi> &#x2014; <hi rendition="#fr">N</hi>) / (<hi rendition="#i">n</hi> + <hi rendition="#i">n</hi><hi rendition="#sub">1</hi>) Moleküle in der Zeiteinheit mehr von oben<lb/>
nach unten als umgekehrt wandern. Daher wandern nach<lb/>
dieser Superposition<lb/><hi rendition="#c"><formula/></hi> Moleküle der ersten Gasart mehr von oben nach unten als<lb/>
umgekehrt und gleich viel Moleküle der zweiten Gasart wandern<lb/>
in der entgegengesetzten Richtung. Der Diffusionscoëfficient<lb/>
ist also jetzt<lb/><hi rendition="#c"><formula/></hi> wo <hi rendition="#fr">D</hi><hi rendition="#sub">1</hi> und <hi rendition="#fr">D</hi><hi rendition="#sub">2</hi> die soeben gefundenen Werthe haben. Nach<lb/>
diesen Formeln würde der Diffusionscoëfficient von dem<lb/>
Mischungsverhältnisse abhängen, also in den verschiedenen<lb/>
Schichten des Gasgemisches nicht denselben Werth haben,<lb/>
so dass für den stationären Zustand <hi rendition="#i">n</hi> und <hi rendition="#i">n</hi><hi rendition="#sub">1</hi> nicht lineare<lb/>
Functionen von <hi rendition="#i">z</hi> wären. <hi rendition="#g">Stefan</hi><note place="foot" n="2)">Wiener Sitzungsber. Bd. 65. S. 323. 1872.</note> hat nach anderen Prin-<lb/>
cipien eine ebenfalls angenähert richtige Theorie der Diffusion<lb/>
entwickelt, nach welcher der Diffusionscoëfficient nicht vom<lb/>
Mischungsverhältnisse abhängig wäre. Experimentell ist diese<lb/>
<fw place="bottom" type="sig"><hi rendition="#g">Boltzmann,</hi> Gastheorie. 7</fw><lb/></p>
        </div>
      </div>
    </body>
  </text>
</TEI>
[97/0111] [Gleich. 96] § 14. Allgemeine Diffusion. Radiometer übereinstimmend zeigen, für sehr verdünnte Gase in der That zutrifft, sind doch so grosse Druckunterschiede, wie sie aus jenen Formeln folgen würden, unzulässig. 1) Es sind dies also lauter Beweise für die Unexactheit aller dieser Rechnungen. In dem Falle der Diffusion, der uns jetzt beschäftigt, hat O. E. Meyer den Widerspruch dadurch beseitigt, dass er der hier berechneten Molekularbewegung, bei welcher N — N1 Mole- küle beider Gase mehr von oben nach unten als umgekehrt in der Zeiteinheit durch die Flächeneinheit wandern, einen gleichen aber entgegengesetzt gerichteten Strom des Gemisches superponirt. Da im Gemische auf n + n1 Moleküle n Moleküle der ersten Gasart und n1 Moleküle der zweiten Gasart ent- fallen, so ist der Strom des Gemisches so zu denken, dass von der ersten Gasart n (N1 — N) / (n + n1), von der zweiten aber n1 (N1 — N) / (n + n1) Moleküle in der Zeiteinheit mehr von oben nach unten als umgekehrt wandern. Daher wandern nach dieser Superposition [FORMEL] Moleküle der ersten Gasart mehr von oben nach unten als umgekehrt und gleich viel Moleküle der zweiten Gasart wandern in der entgegengesetzten Richtung. Der Diffusionscoëfficient ist also jetzt [FORMEL] wo D1 und D2 die soeben gefundenen Werthe haben. Nach diesen Formeln würde der Diffusionscoëfficient von dem Mischungsverhältnisse abhängen, also in den verschiedenen Schichten des Gasgemisches nicht denselben Werth haben, so dass für den stationären Zustand n und n1 nicht lineare Functionen von z wären. Stefan 2) hat nach anderen Prin- cipien eine ebenfalls angenähert richtige Theorie der Diffusion entwickelt, nach welcher der Diffusionscoëfficient nicht vom Mischungsverhältnisse abhängig wäre. Experimentell ist diese 1) Kirchhoff, Vorles. üb. Theorie der Wärme, herausgegeben von Max Planck. Leipzig, B. G. Teubner, 1894. S. 210. 2) Wiener Sitzungsber. Bd. 65. S. 323. 1872. Boltzmann, Gastheorie. 7

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
TCF (tokenisiert, serialisiert, lemmatisiert, normalisiert)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Language Resource Switchboard?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: https://www.deutschestextarchiv.de/boltzmann_gastheorie01_1896
URL zu dieser Seite: https://www.deutschestextarchiv.de/boltzmann_gastheorie01_1896/111
Zitationshilfe: Boltzmann, Ludwig: Vorlesungen über Gastheorie. Bd. 1. Leipzig, 1896, S. 97. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/boltzmann_gastheorie01_1896/111>, abgerufen am 26.04.2024.