Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Gerstner, Franz Joseph von: Handbuch der Mechanik. Bd. 3: Beschreibung und Berechnung grösserer Maschinenanlagen. Wien, 1834.

Bild:
<< vorherige Seite

Beispiel.
Fig.
11.
Tab.
85.
Seite bewegt sich die Verlängerung der Welle in der Stopfbüchse q r, Fig. 11. Weil der
lichte Durchmesser 2 x = 6,4 Zoll, so wird der Durchmesser für die Reibung bei q r mit
10 Zoll anzunehmen seyn, da der Theil c p q r von Gusseisen hergestellt wird. Demnach
beträgt der mittlere Durchmesser für die reibenden Flächen, oder der Werth, welcher
für 2 e in unsere Formel zu substituiren ist 1/2 (4 + 10) = 7 Zoll.

Der Reibungskoeffizient m kann mit 1/7 angeschlagen werden. Endlich beträgt nach
der Tabelle a = 3,8 Zoll und x = 3,2 Zoll. Werden alle diese Werthe in die im vorigen §.
gefundene Gleichung für den Effekt substituirt, so erhalten wir denselben
[Formel 1] [Formel 2] . Setzt man v = 3 Fuss, so ist der Effekt [Formel 3]
Diese Rechnung zeigt, dass die Widerstände, welche bei der Bewegung der Maschine ein-
treten, die Steighöhe von 90 Fuss um 11 Fuss, oder um den achten Theil vermehren; es
wird also der Effekt nicht = v . 0,16 = 0,48 Kubikfuss wie in der Tabelle Seite 252, sondern
bloss [Formel 4] = 0,43 Kubikfuss in der Sekunde seyn. Genügt diese Wassermenge für das vor-
handene Bedürfniss, so können alle in der Tabelle für diesen Fall angegebenen Di-
mensionen für die Konstrukzion der Maschine angenommen werden. Die Querschnitts-
fläche f der Wasserradschaufeln ergäbe sich für diesen Fall, wo v = 0,476 c = 3 Fuss, also
c = 6,3 Fuss ist, aus der obigen Gleichung für den Effekt 0,43 = [Formel 5] . Hieraus
folgt nämlich f = 23 Quadratfuss, woraus sich die Breite des Gerinnes bestimmen lässt.

Sollte aber die Wassermenge von 0,43 Kubikfuss nicht genügen, und jene von 0,43 Ku-
bikfuss, welche in der Tabelle für den statischen Zustand berechnet wurde, gefordert
werden, so muss man die ganze Rechnung noch einmal machen, hiebei aber die Steig-
höhe H nicht mit 90, sondern mit 90 + 11 Fuss annehmen. Die Resultate dieser Rech-
nung werden dann für die Durchmesser 2 a und 2 x grössere Werthe geben, wodurch die
Widerstandshöhe etwas geringer als 11 Fuss ausfällt, demnach auch die von der Ma-
schine gelieferte Wassermenge jetzt etwas grösser, als 0,43 Kubikfuss sich ergiebt. Dieser
Unterschied ist aber zu unbedeutend, um in weitere Berücksichtigung zu kommen; man
kann also die bei der zweiten Rechnung gefundenen Dimensionen der Maschine für ihren
Bau annehmen.

§. 183.

Die zweite Gattung Spiralpumpen hat, wie bereits erinnert wurde, Röhren
von durchaus gleichem Durchmesser im Lichten, die Windungen nehmen aber vom
Horne an gegen das Steigrohr so ab, als wenn selbe um die Oberfläche eines Kegels ge-
Fig.
14.
und
15.
Tab.
86.
wunden worden wären. Es sey Fig. 14 der Durchschnitt der ersten und Fig. 15 jener der
letzten Windung. Der mittlere Halbmesser der ersten Windung sey a' c' = A und jener
der letzten Windung a c = u, dann der Halbmesser des Schlangenrohres im Lichten aller
Röhren = a. Der kubische Inhalt der Luft und des Wassers in der ersten Windung ist

Beispiel.
Fig.
11.
Tab.
85.
Seite bewegt sich die Verlängerung der Welle in der Stopfbüchse q r, Fig. 11. Weil der
lichte Durchmesser 2 x = 6,4 Zoll, so wird der Durchmesser für die Reibung bei q r mit
10 Zoll anzunehmen seyn, da der Theil c p q r von Gusseisen hergestellt wird. Demnach
beträgt der mittlere Durchmesser für die reibenden Flächen, oder der Werth, welcher
für 2 e in unsere Formel zu substituiren ist ½ (4 + 10) = 7 Zoll.

Der Reibungskoeffizient m kann mit 1/7 angeschlagen werden. Endlich beträgt nach
der Tabelle a = 3,8 Zoll und x = 3,2 Zoll. Werden alle diese Werthe in die im vorigen §.
gefundene Gleichung für den Effekt substituirt, so erhalten wir denselben
[Formel 1] [Formel 2] . Setzt man v = 3 Fuss, so ist der Effekt [Formel 3]
Diese Rechnung zeigt, dass die Widerstände, welche bei der Bewegung der Maschine ein-
treten, die Steighöhe von 90 Fuss um 11 Fuss, oder um den achten Theil vermehren; es
wird also der Effekt nicht = v . 0,16 = 0,48 Kubikfuss wie in der Tabelle Seite 252, sondern
bloss [Formel 4] = 0,43 Kubikfuss in der Sekunde seyn. Genügt diese Wassermenge für das vor-
handene Bedürfniss, so können alle in der Tabelle für diesen Fall angegebenen Di-
mensionen für die Konstrukzion der Maschine angenommen werden. Die Querschnitts-
fläche f der Wasserradschaufeln ergäbe sich für diesen Fall, wo v = 0,476 c = 3 Fuss, also
c = 6,3 Fuss ist, aus der obigen Gleichung für den Effekt 0,43 = [Formel 5] . Hieraus
folgt nämlich f = 23 Quadratfuss, woraus sich die Breite des Gerinnes bestimmen lässt.

Sollte aber die Wassermenge von 0,43 Kubikfuss nicht genügen, und jene von 0,43 Ku-
bikfuss, welche in der Tabelle für den statischen Zustand berechnet wurde, gefordert
werden, so muss man die ganze Rechnung noch einmal machen, hiebei aber die Steig-
höhe H nicht mit 90, sondern mit 90 + 11 Fuss annehmen. Die Resultate dieser Rech-
nung werden dann für die Durchmesser 2 a und 2 x grössere Werthe geben, wodurch die
Widerstandshöhe etwas geringer als 11 Fuss ausfällt, demnach auch die von der Ma-
schine gelieferte Wassermenge jetzt etwas grösser, als 0,43 Kubikfuss sich ergiebt. Dieser
Unterschied ist aber zu unbedeutend, um in weitere Berücksichtigung zu kommen; man
kann also die bei der zweiten Rechnung gefundenen Dimensionen der Maschine für ihren
Bau annehmen.

§. 183.

Die zweite Gattung Spiralpumpen hat, wie bereits erinnert wurde, Röhren
von durchaus gleichem Durchmesser im Lichten, die Windungen nehmen aber vom
Horne an gegen das Steigrohr so ab, als wenn selbe um die Oberfläche eines Kegels ge-
Fig.
14.
und
15.
Tab.
86.
wunden worden wären. Es sey Fig. 14 der Durchschnitt der ersten und Fig. 15 jener der
letzten Windung. Der mittlere Halbmesser der ersten Windung sey a' c' = A und jener
der letzten Windung a c = u, dann der Halbmesser des Schlangenrohres im Lichten aller
Röhren = a. Der kubische Inhalt der Luft und des Wassers in der ersten Windung ist

<TEI>
  <text>
    <body>
      <div n="1">
        <div n="2">
          <div n="3">
            <p><pb facs="#f0292" n="256"/><fw place="top" type="header"><hi rendition="#i">Beispiel</hi>.</fw><lb/><note place="left">Fig.<lb/>
11.<lb/>
Tab.<lb/>
85.</note>Seite bewegt sich die Verlängerung der Welle in der Stopfbüchse q r, Fig. 11. Weil der<lb/>
lichte Durchmesser 2 x = 6,<hi rendition="#sub">4</hi> Zoll, so wird der Durchmesser für die Reibung bei q r mit<lb/>
10 Zoll anzunehmen seyn, da der Theil c p q r von Gusseisen hergestellt wird. Demnach<lb/>
beträgt der mittlere Durchmesser für die reibenden Flächen, oder der Werth, welcher<lb/>
für 2 e in unsere Formel zu substituiren ist ½ (4 + 10) = 7 Zoll.</p><lb/>
            <p>Der Reibungskoeffizient m kann mit 1/7 angeschlagen werden. Endlich beträgt nach<lb/>
der Tabelle a = 3,<hi rendition="#sub">8</hi> Zoll und x = 3,<hi rendition="#sub">2</hi> Zoll. Werden alle diese Werthe in die im vorigen §.<lb/>
gefundene Gleichung für den Effekt substituirt, so erhalten wir denselben<lb/><formula/> <formula/>. Setzt man v = 3 Fuss, so ist der Effekt <formula/><lb/>
Diese Rechnung zeigt, dass die Widerstände, welche bei der Bewegung der Maschine ein-<lb/>
treten, die Steighöhe von 90 Fuss um 11 Fuss, oder um den achten Theil vermehren; es<lb/>
wird also der Effekt nicht = v . 0,<hi rendition="#sub">16</hi> = 0,<hi rendition="#sub">48</hi> Kubikfuss wie in der Tabelle Seite 252, sondern<lb/>
bloss <formula/> = 0,<hi rendition="#sub">43</hi> Kubikfuss in der Sekunde seyn. Genügt diese Wassermenge für das vor-<lb/>
handene Bedürfniss, so können alle in der Tabelle für diesen Fall angegebenen Di-<lb/>
mensionen für die Konstrukzion der Maschine angenommen werden. Die Querschnitts-<lb/>
fläche f der Wasserradschaufeln ergäbe sich für diesen Fall, wo v = 0,<hi rendition="#sub">476</hi> c = 3 Fuss, also<lb/>
c = 6,<hi rendition="#sub">3</hi> Fuss ist, aus der obigen Gleichung für den Effekt 0,<hi rendition="#sub">43</hi> = <formula/>. Hieraus<lb/>
folgt nämlich f = 23 Quadratfuss, woraus sich die Breite des Gerinnes bestimmen lässt.</p><lb/>
            <p>Sollte aber die Wassermenge von 0,<hi rendition="#sub">43</hi> Kubikfuss nicht genügen, und jene von 0,<hi rendition="#sub">43</hi> Ku-<lb/>
bikfuss, welche in der Tabelle für den statischen Zustand berechnet wurde, gefordert<lb/>
werden, so muss man die ganze Rechnung noch einmal machen, hiebei aber die Steig-<lb/>
höhe H nicht mit 90, sondern mit 90 + 11 Fuss annehmen. Die Resultate dieser Rech-<lb/>
nung werden dann für die Durchmesser 2 a und 2 x grössere Werthe geben, wodurch die<lb/>
Widerstandshöhe etwas geringer als 11 Fuss ausfällt, demnach auch die von der Ma-<lb/>
schine gelieferte Wassermenge jetzt etwas grösser, als 0,<hi rendition="#sub">43</hi> Kubikfuss sich ergiebt. Dieser<lb/>
Unterschied ist aber zu unbedeutend, um in weitere Berücksichtigung zu kommen; man<lb/>
kann also die bei der zweiten Rechnung gefundenen Dimensionen der Maschine für ihren<lb/>
Bau annehmen.</p>
          </div><lb/>
          <div n="3">
            <head>§. 183.</head><lb/>
            <p>Die <hi rendition="#g">zweite Gattung Spiralpumpen</hi> hat, wie bereits erinnert wurde, Röhren<lb/>
von durchaus gleichem Durchmesser im Lichten, die Windungen nehmen aber vom<lb/>
Horne an gegen das Steigrohr so ab, als wenn selbe um die Oberfläche eines Kegels ge-<lb/><note place="left">Fig.<lb/>
14.<lb/>
und<lb/>
15.<lb/>
Tab.<lb/>
86.</note>wunden worden wären. Es sey Fig. 14 der Durchschnitt der ersten und Fig. 15 jener der<lb/>
letzten Windung. Der mittlere Halbmesser der ersten Windung sey a' c' = A und jener<lb/>
der letzten Windung a c = u, dann der Halbmesser des Schlangenrohres im Lichten aller<lb/>
Röhren = a. Der kubische Inhalt der Luft und des Wassers in der ersten Windung ist<lb/></p>
          </div>
        </div>
      </div>
    </body>
  </text>
</TEI>
[256/0292] Beispiel. Seite bewegt sich die Verlängerung der Welle in der Stopfbüchse q r, Fig. 11. Weil der lichte Durchmesser 2 x = 6,4 Zoll, so wird der Durchmesser für die Reibung bei q r mit 10 Zoll anzunehmen seyn, da der Theil c p q r von Gusseisen hergestellt wird. Demnach beträgt der mittlere Durchmesser für die reibenden Flächen, oder der Werth, welcher für 2 e in unsere Formel zu substituiren ist ½ (4 + 10) = 7 Zoll. Fig. 11. Tab. 85. Der Reibungskoeffizient m kann mit 1/7 angeschlagen werden. Endlich beträgt nach der Tabelle a = 3,8 Zoll und x = 3,2 Zoll. Werden alle diese Werthe in die im vorigen §. gefundene Gleichung für den Effekt substituirt, so erhalten wir denselben [FORMEL] [FORMEL]. Setzt man v = 3 Fuss, so ist der Effekt [FORMEL] Diese Rechnung zeigt, dass die Widerstände, welche bei der Bewegung der Maschine ein- treten, die Steighöhe von 90 Fuss um 11 Fuss, oder um den achten Theil vermehren; es wird also der Effekt nicht = v . 0,16 = 0,48 Kubikfuss wie in der Tabelle Seite 252, sondern bloss [FORMEL] = 0,43 Kubikfuss in der Sekunde seyn. Genügt diese Wassermenge für das vor- handene Bedürfniss, so können alle in der Tabelle für diesen Fall angegebenen Di- mensionen für die Konstrukzion der Maschine angenommen werden. Die Querschnitts- fläche f der Wasserradschaufeln ergäbe sich für diesen Fall, wo v = 0,476 c = 3 Fuss, also c = 6,3 Fuss ist, aus der obigen Gleichung für den Effekt 0,43 = [FORMEL]. Hieraus folgt nämlich f = 23 Quadratfuss, woraus sich die Breite des Gerinnes bestimmen lässt. Sollte aber die Wassermenge von 0,43 Kubikfuss nicht genügen, und jene von 0,43 Ku- bikfuss, welche in der Tabelle für den statischen Zustand berechnet wurde, gefordert werden, so muss man die ganze Rechnung noch einmal machen, hiebei aber die Steig- höhe H nicht mit 90, sondern mit 90 + 11 Fuss annehmen. Die Resultate dieser Rech- nung werden dann für die Durchmesser 2 a und 2 x grössere Werthe geben, wodurch die Widerstandshöhe etwas geringer als 11 Fuss ausfällt, demnach auch die von der Ma- schine gelieferte Wassermenge jetzt etwas grösser, als 0,43 Kubikfuss sich ergiebt. Dieser Unterschied ist aber zu unbedeutend, um in weitere Berücksichtigung zu kommen; man kann also die bei der zweiten Rechnung gefundenen Dimensionen der Maschine für ihren Bau annehmen. §. 183. Die zweite Gattung Spiralpumpen hat, wie bereits erinnert wurde, Röhren von durchaus gleichem Durchmesser im Lichten, die Windungen nehmen aber vom Horne an gegen das Steigrohr so ab, als wenn selbe um die Oberfläche eines Kegels ge- wunden worden wären. Es sey Fig. 14 der Durchschnitt der ersten und Fig. 15 jener der letzten Windung. Der mittlere Halbmesser der ersten Windung sey a' c' = A und jener der letzten Windung a c = u, dann der Halbmesser des Schlangenrohres im Lichten aller Röhren = a. Der kubische Inhalt der Luft und des Wassers in der ersten Windung ist Fig. 14. und 15. Tab. 86.

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
TCF (tokenisiert, serialisiert, lemmatisiert, normalisiert)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: http://www.deutschestextarchiv.de/gerstner_mechanik03_1834
URL zu dieser Seite: http://www.deutschestextarchiv.de/gerstner_mechanik03_1834/292
Zitationshilfe: Gerstner, Franz Joseph von: Handbuch der Mechanik. Bd. 3: Beschreibung und Berechnung grösserer Maschinenanlagen. Wien, 1834, S. 256. In: Deutsches Textarchiv <http://www.deutschestextarchiv.de/gerstner_mechanik03_1834/292>, abgerufen am 20.07.2019.