Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Lambert, Johann Heinrich: Neues Organon. Bd. 1. Leipzig, 1764.

Bild:
<< vorherige Seite

VI. Hauptstück,
dem Euclidischen ähnlicher werde. Es ist folgender:

Wenn der Schlußsatz eines Schlusses in Barbara

M ist B
A ist M
A ist B

identisch ist: so ist auch der Untersatz identisch.
Beweis: Man setze, er sey nicht identisch, so
läßt er sich nicht umkehren. Da aber dieses
mit dem Schlußsatze angeht (vermöge der Be-
dingung) so gilt folgender Schluß:

A ist M
B ist A
B ist M.

Demnach läßt sich der Obersatz umkehren. Folg-
lich da in dem Schlußsatze A und B, in dem
Obersatze M und B Wechse lbegriffe sind, so
sind auch A und M Wechselbegriffe. Nun ist
A das Subject, B das Prädicat des Untersa-
tzes: A ist M, folglich läßt sich dieser Satz um-
kehren, und ist demnach identisch.

§. 392.

Jn diesem Beweise scheint nun, wie in dem Eu-
clidischen, aus einem falschen Satze ein wahrer zu
folgen. Allein diese Folge ist auch nur scheinbar,
weil man den umgekehrten Satz, den der Gegner
nicht einräumt, und so auch dessen Gegentheil, wel-
ches der Satz:

Etliche M sind nicht A

gewesen wäre, zu dem Beweise gar nicht gebraucht,
sondern nur den directen Satz:

Alle A sind B

dazu annimmt, den der Gegner noch gelten läßt.
Man wird auch aus dem oben (§. 372.) gegebenen
directen Beweise sehen, daß sich die Jdentität eines

jeden

VI. Hauptſtuͤck,
dem Euclidiſchen aͤhnlicher werde. Es iſt folgender:

Wenn der Schlußſatz eines Schluſſes in Barbara

M iſt B
A iſt M
A iſt B

identiſch iſt: ſo iſt auch der Unterſatz identiſch.
Beweis: Man ſetze, er ſey nicht identiſch, ſo
laͤßt er ſich nicht umkehren. Da aber dieſes
mit dem Schlußſatze angeht (vermoͤge der Be-
dingung) ſo gilt folgender Schluß:

A iſt M
B iſt A
B iſt M.

Demnach laͤßt ſich der Oberſatz umkehren. Folg-
lich da in dem Schlußſatze A und B, in dem
Oberſatze M und B Wechſe lbegriffe ſind, ſo
ſind auch A und M Wechſelbegriffe. Nun iſt
A das Subject, B das Praͤdicat des Unterſa-
tzes: A iſt M, folglich laͤßt ſich dieſer Satz um-
kehren, und iſt demnach identiſch.

§. 392.

Jn dieſem Beweiſe ſcheint nun, wie in dem Eu-
clidiſchen, aus einem falſchen Satze ein wahrer zu
folgen. Allein dieſe Folge iſt auch nur ſcheinbar,
weil man den umgekehrten Satz, den der Gegner
nicht einraͤumt, und ſo auch deſſen Gegentheil, wel-
ches der Satz:

Etliche M ſind nicht A

geweſen waͤre, zu dem Beweiſe gar nicht gebraucht,
ſondern nur den directen Satz:

Alle A ſind B

dazu annimmt, den der Gegner noch gelten laͤßt.
Man wird auch aus dem oben (§. 372.) gegebenen
directen Beweiſe ſehen, daß ſich die Jdentitaͤt eines

jeden
<TEI>
  <text>
    <body>
      <div n="1">
        <div n="2">
          <div n="3">
            <p><pb facs="#f0278" n="256"/><fw place="top" type="header"><hi rendition="#b"><hi rendition="#aq">VI.</hi> Haupt&#x017F;tu&#x0364;ck,</hi></fw><lb/>
dem Euclidi&#x017F;chen a&#x0364;hnlicher werde. Es i&#x017F;t folgender:</p><lb/>
            <p>Wenn der Schluß&#x017F;atz eines Schlu&#x017F;&#x017F;es in <hi rendition="#aq">Barbara</hi></p><lb/>
            <list>
              <item><hi rendition="#aq">M</hi> i&#x017F;t <hi rendition="#aq">B</hi></item><lb/>
              <item><hi rendition="#aq">A</hi> i&#x017F;t <hi rendition="#aq">M</hi></item><lb/>
              <item><hi rendition="#aq">A</hi> i&#x017F;t <hi rendition="#aq">B</hi></item>
            </list><lb/>
            <p>identi&#x017F;ch i&#x017F;t: &#x017F;o i&#x017F;t auch der Unter&#x017F;atz identi&#x017F;ch.<lb/>
Beweis: Man &#x017F;etze, er &#x017F;ey nicht identi&#x017F;ch, &#x017F;o<lb/>
la&#x0364;ßt er &#x017F;ich nicht umkehren. Da aber die&#x017F;es<lb/>
mit dem Schluß&#x017F;atze angeht (vermo&#x0364;ge der Be-<lb/>
dingung) &#x017F;o gilt folgender Schluß:</p><lb/>
            <list>
              <item><hi rendition="#aq">A</hi> i&#x017F;t <hi rendition="#aq">M</hi></item><lb/>
              <item><hi rendition="#aq">B</hi> i&#x017F;t <hi rendition="#aq">A</hi></item><lb/>
              <item><hi rendition="#aq">B</hi> i&#x017F;t <hi rendition="#aq">M.</hi></item>
            </list><lb/>
            <p>Demnach la&#x0364;ßt &#x017F;ich der Ober&#x017F;atz umkehren. Folg-<lb/>
lich da in dem Schluß&#x017F;atze <hi rendition="#aq">A</hi> und <hi rendition="#aq">B,</hi> in dem<lb/>
Ober&#x017F;atze <hi rendition="#aq">M</hi> und <hi rendition="#aq">B</hi> Wech&#x017F;e lbegriffe &#x017F;ind, &#x017F;o<lb/>
&#x017F;ind auch <hi rendition="#aq">A</hi> und <hi rendition="#aq">M</hi> Wech&#x017F;elbegriffe. Nun i&#x017F;t<lb/><hi rendition="#aq">A</hi> das Subject, <hi rendition="#aq">B</hi> das Pra&#x0364;dicat des Unter&#x017F;a-<lb/>
tzes: <hi rendition="#aq">A</hi> i&#x017F;t <hi rendition="#aq">M,</hi> folglich la&#x0364;ßt &#x017F;ich die&#x017F;er Satz um-<lb/>
kehren, und i&#x017F;t demnach identi&#x017F;ch.</p>
          </div><lb/>
          <div n="3">
            <head>§. 392.</head><lb/>
            <p>Jn die&#x017F;em Bewei&#x017F;e &#x017F;cheint nun, wie in dem Eu-<lb/>
clidi&#x017F;chen, aus einem fal&#x017F;chen Satze ein wahrer zu<lb/>
folgen. Allein die&#x017F;e Folge i&#x017F;t auch nur &#x017F;cheinbar,<lb/>
weil man den umgekehrten Satz, den der Gegner<lb/>
nicht einra&#x0364;umt, und &#x017F;o auch de&#x017F;&#x017F;en Gegentheil, wel-<lb/>
ches der Satz:</p><lb/>
            <list>
              <item>Etliche <hi rendition="#aq">M</hi> &#x017F;ind nicht <hi rendition="#aq">A</hi></item>
            </list><lb/>
            <p>gewe&#x017F;en wa&#x0364;re, zu dem Bewei&#x017F;e gar nicht gebraucht,<lb/>
&#x017F;ondern nur den directen Satz:</p><lb/>
            <list>
              <item>Alle <hi rendition="#aq">A</hi> &#x017F;ind <hi rendition="#aq">B</hi></item>
            </list><lb/>
            <p>dazu annimmt, den der Gegner noch gelten la&#x0364;ßt.<lb/>
Man wird auch aus dem oben (§. 372.) gegebenen<lb/>
directen Bewei&#x017F;e &#x017F;ehen, daß &#x017F;ich die Jdentita&#x0364;t eines<lb/>
<fw place="bottom" type="catch">jeden</fw><lb/></p>
          </div>
        </div>
      </div>
    </body>
  </text>
</TEI>
[256/0278] VI. Hauptſtuͤck, dem Euclidiſchen aͤhnlicher werde. Es iſt folgender: Wenn der Schlußſatz eines Schluſſes in Barbara M iſt B A iſt M A iſt B identiſch iſt: ſo iſt auch der Unterſatz identiſch. Beweis: Man ſetze, er ſey nicht identiſch, ſo laͤßt er ſich nicht umkehren. Da aber dieſes mit dem Schlußſatze angeht (vermoͤge der Be- dingung) ſo gilt folgender Schluß: A iſt M B iſt A B iſt M. Demnach laͤßt ſich der Oberſatz umkehren. Folg- lich da in dem Schlußſatze A und B, in dem Oberſatze M und B Wechſe lbegriffe ſind, ſo ſind auch A und M Wechſelbegriffe. Nun iſt A das Subject, B das Praͤdicat des Unterſa- tzes: A iſt M, folglich laͤßt ſich dieſer Satz um- kehren, und iſt demnach identiſch. §. 392. Jn dieſem Beweiſe ſcheint nun, wie in dem Eu- clidiſchen, aus einem falſchen Satze ein wahrer zu folgen. Allein dieſe Folge iſt auch nur ſcheinbar, weil man den umgekehrten Satz, den der Gegner nicht einraͤumt, und ſo auch deſſen Gegentheil, wel- ches der Satz: Etliche M ſind nicht A geweſen waͤre, zu dem Beweiſe gar nicht gebraucht, ſondern nur den directen Satz: Alle A ſind B dazu annimmt, den der Gegner noch gelten laͤßt. Man wird auch aus dem oben (§. 372.) gegebenen directen Beweiſe ſehen, daß ſich die Jdentitaͤt eines jeden

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
TCF (tokenisiert, serialisiert, lemmatisiert, normalisiert)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Language Resource Switchboard?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: http://www.deutschestextarchiv.de/lambert_organon01_1764
URL zu dieser Seite: http://www.deutschestextarchiv.de/lambert_organon01_1764/278
Zitationshilfe: Lambert, Johann Heinrich: Neues Organon. Bd. 1. Leipzig, 1764, S. 256. In: Deutsches Textarchiv <http://www.deutschestextarchiv.de/lambert_organon01_1764/278>, abgerufen am 23.10.2019.