Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 2, Abt. 1. Leipzig, 1891.

Bild:
<< vorherige Seite

§ 37. Produkte und Summen von Grundbeziehungen.
XI0. Multiplikationstabelle bei Ausschluss undeutiger Symbole.
------,a1 b = b = d + e,a1 c = c = d + f,a1 d = d,a1 e = e,a1 f = f,a1 g = g,
a b1 = a,------------,b c = d,b d = d,b e = e,b f = 0,b g = 0,
a c1 = a,b1 c1 = a + g,------------,c d = d,c e = 0,c f = f,c g = 0,
a d1 = a,b1 d1 = b1 = a + f + g,c1 d1 = c1 = a + e + g,------------,d e = 0,d f = 0,d g = 0,
a e1 = a,b1 e1 = b1 = a + f + g,c1 e1 = a + g,d1 e1 = b1 = a + f + g,------------,e f = 0,e g = 0,
a f1 = a,b1 f1 = a + g,c1 f1 = c1 = a + e + g,d1 f1 = c1 = a + e + g,e1 f1 = a + d + g,------------,f g = 0,
a g1 = a,b1 g1 = a + f,c1 g1 = a + e,d1 g1 = a + e + f,e1 g1 = a + d + f,f1 g1 = a + d + e,------------,
------,a1 b1 = f + g,a1 c1 = e + g,a1 d1 = e + f + g,a1 e1 = d + f + g,a1 f1 = d + e + g,a1 g1 = e + d + f,
a b = 0,------------,b c1 = e,b d1 = e,b e1 = d,b f1 = b = d + e,b g1 = b = d + e,
a c = 0,b1 c = f,------------,c d1 = f,c e1 = c = d + f,c f1 = d,c g1 = c = d + f,
a d = 0,b1 d = 0,c1 d = 0,------------,d e1 = d,d f1 = d,d g1 = d,
a e = 0,b1 e = 0,c1 e = e,d1 e = e,------------,e f1 = e,e g1 = e,
a f = 0,b1 f = f,c1 f = 0,d1 f = f,e1 f = f,------------,f g1 = f,
a g = 0,b1 g = g,c1 g = g,d1 g = g,e1 g = g,f1 g = g,------------.

Schröder, Algebra der Logik. II. 9

§ 37. Produkte und Summen von Grundbeziehungen.
XI0. Multiplikationstabelle bei Ausschluss undeutiger Symbole.
———,a1 b = b = d + e,a1 c = c = d + f,a1 d = d,a1 e = e,a1 f = f,a1 g = g,
a b1 = a,——————,b c = d,b d = d,b e = e,b f = 0,b g = 0,
a c1 = a,b1 c1 = a + g,——————,c d = d,c e = 0,c f = f,c g = 0,
a d1 = a,b1 d1 = b1 = a + f + g,c1 d1 = c1 = a + e + g,——————,d e = 0,d f = 0,d g = 0,
a e1 = a,b1 e1 = b1 = a + f + g,c1 e1 = a + g,d1 e1 = b1 = a + f + g,——————,e f = 0,e g = 0,
a f1 = a,b1 f1 = a + g,c1 f1 = c1 = a + e + g,d1 f1 = c1 = a + e + g,e1 f1 = a + d + g,——————,f g = 0,
a g1 = a,b1 g1 = a + f,c1 g1 = a + e,d1 g1 = a + e + f,e1 g1 = a + d + f,f1 g1 = a + d + e,——————,
———,a1 b1 = f + g,a1 c1 = e + g,a1 d1 = e + f + g,a1 e1 = d + f + g,a1 f1 = d + e + g,a1 g1 = e + d + f,
a b = 0,——————,b c1 = e,b d1 = e,b e1 = d,b f1 = b = d + e,b g1 = b = d + e,
a c = 0,b1 c = f,——————,c d1 = f,c e1 = c = d + f,c f1 = d,c g1 = c = d + f,
a d = 0,b1 d = 0,c1 d = 0,——————,d e1 = d,d f1 = d,d g1 = d,
a e = 0,b1 e = 0,c1 e = e,d1 e = e,——————,e f1 = e,e g1 = e,
a f = 0,b1 f = f,c1 f = 0,d1 f = f,e1 f = f,——————,f g1 = f,
a g = 0,b1 g = g,c1 g = g,d1 g = g,e1 g = g,f1 g = g,——————.

Schröder, Algebra der Logik. II. 9
<TEI>
  <text>
    <body>
      <div n="1">
        <div n="2">
          <div n="3">
            <p>
              <pb facs="#f0153" n="129"/>
              <fw place="top" type="header">§ 37. Produkte und Summen von Grundbeziehungen.</fw><lb/> <hi rendition="#c">XI<hi rendition="#sup">0</hi>. <hi rendition="#g">Multiplikationstabelle bei Ausschluss undeutiger Symbole</hi>.</hi><lb/>
              <table>
                <row>
                  <cell>&#x2014;&#x2014;&#x2014;,</cell>
                  <cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">b</hi> = <hi rendition="#i">b</hi> = <hi rendition="#i">d</hi> + <hi rendition="#i">e</hi>,</cell>
                  <cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi> = <hi rendition="#i">c</hi> = <hi rendition="#i">d</hi> + <hi rendition="#i">f</hi>,</cell>
                  <cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">d</hi> = <hi rendition="#i">d</hi>,</cell>
                  <cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">e</hi> = <hi rendition="#i">e</hi>,</cell>
                  <cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">f</hi> = <hi rendition="#i">f</hi>,</cell>
                  <cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi> = <hi rendition="#i">g</hi>,</cell>
                </row><lb/>
                <row>
                  <cell><hi rendition="#i">a b</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi>,</cell>
                  <cell>&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;,</cell>
                  <cell><hi rendition="#i">b c</hi> = <hi rendition="#i">d</hi>,</cell>
                  <cell><hi rendition="#i">b d</hi> = <hi rendition="#i">d</hi>,</cell>
                  <cell><hi rendition="#i">b e</hi> = <hi rendition="#i">e</hi>,</cell>
                  <cell><hi rendition="#i">b f</hi> = 0,</cell>
                  <cell><hi rendition="#i">b g</hi> = 0,</cell>
                </row><lb/>
                <row>
                  <cell><hi rendition="#i">a c</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi>,</cell>
                  <cell><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi> + <hi rendition="#i">g</hi>,</cell>
                  <cell>&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;,</cell>
                  <cell><hi rendition="#i">c d</hi> = <hi rendition="#i">d</hi>,</cell>
                  <cell><hi rendition="#i">c e</hi> = 0,</cell>
                  <cell><hi rendition="#i">c f</hi> = <hi rendition="#i">f</hi>,</cell>
                  <cell><hi rendition="#i">c g</hi> = 0,</cell>
                </row><lb/>
                <row>
                  <cell><hi rendition="#i">a d</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi>,</cell>
                  <cell><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">d</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi> + <hi rendition="#i">f</hi> + <hi rendition="#i">g</hi>,</cell>
                  <cell><hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#i">d</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">c</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi> + <hi rendition="#i">e</hi> + <hi rendition="#i">g</hi>,</cell>
                  <cell>&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;,</cell>
                  <cell><hi rendition="#i">d e</hi> = 0,</cell>
                  <cell><hi rendition="#i">d f</hi> = 0,</cell>
                  <cell><hi rendition="#i">d g</hi> = 0,</cell>
                </row><lb/>
                <row>
                  <cell><hi rendition="#i">a e</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi>,</cell>
                  <cell><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">e</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi> + <hi rendition="#i">f</hi> + <hi rendition="#i">g</hi>,</cell>
                  <cell><hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#i">e</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi> + <hi rendition="#i">g</hi>,</cell>
                  <cell><hi rendition="#i">d</hi><hi rendition="#sub">1</hi><hi rendition="#i">e</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">b</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi> + <hi rendition="#i">f</hi> + <hi rendition="#i">g</hi>,</cell>
                  <cell>&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;,</cell>
                  <cell><hi rendition="#i">e f</hi> = 0,</cell>
                  <cell><hi rendition="#i">e g</hi> = 0,</cell>
                </row><lb/>
                <row>
                  <cell><hi rendition="#i">a f</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi>,</cell>
                  <cell><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">f</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi> + <hi rendition="#i">g</hi>,</cell>
                  <cell><hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#i">f</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">c</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi> + <hi rendition="#i">e</hi> + <hi rendition="#i">g</hi>,</cell>
                  <cell><hi rendition="#i">d</hi><hi rendition="#sub">1</hi><hi rendition="#i">f</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">c</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi> + <hi rendition="#i">e</hi> + <hi rendition="#i">g</hi>,</cell>
                  <cell><hi rendition="#i">e</hi><hi rendition="#sub">1</hi><hi rendition="#i">f</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi> + <hi rendition="#i">d</hi> + <hi rendition="#i">g</hi>,</cell>
                  <cell>&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;,</cell>
                  <cell><hi rendition="#i">f g</hi> = 0,</cell>
                </row><lb/>
                <row>
                  <cell><hi rendition="#i">a g</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi>,</cell>
                  <cell><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi> + <hi rendition="#i">f</hi>,</cell>
                  <cell><hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi> + <hi rendition="#i">e</hi>,</cell>
                  <cell><hi rendition="#i">d</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi> + <hi rendition="#i">e</hi> + <hi rendition="#i">f</hi>,</cell>
                  <cell><hi rendition="#i">e</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi> + <hi rendition="#i">d</hi> + <hi rendition="#i">f</hi>,</cell>
                  <cell><hi rendition="#i">f</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">a</hi> + <hi rendition="#i">d</hi> + <hi rendition="#i">e</hi>,</cell>
                  <cell>&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;,</cell>
                </row><lb/>
                <row>
                  <cell>&#x2014;&#x2014;&#x2014;,</cell>
                  <cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">b</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">f</hi> + <hi rendition="#i">g</hi>,</cell>
                  <cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">e</hi> + <hi rendition="#i">g</hi>,</cell>
                  <cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">d</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">e</hi> + <hi rendition="#i">f</hi> + <hi rendition="#i">g</hi>,</cell>
                  <cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">e</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">d</hi> + <hi rendition="#i">f</hi> + <hi rendition="#i">g</hi>,</cell>
                  <cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">f</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">d</hi> + <hi rendition="#i">e</hi> + <hi rendition="#i">g</hi>,</cell>
                  <cell><hi rendition="#i">a</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">e</hi> + <hi rendition="#i">d</hi> + <hi rendition="#i">f</hi>,</cell>
                </row><lb/>
                <row>
                  <cell><hi rendition="#i">a b</hi> = 0,</cell>
                  <cell>&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;,</cell>
                  <cell><hi rendition="#i">b c</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">e</hi>,</cell>
                  <cell><hi rendition="#i">b d</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">e</hi>,</cell>
                  <cell><hi rendition="#i">b e</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">d</hi>,</cell>
                  <cell><hi rendition="#i">b f</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">b</hi> = <hi rendition="#i">d</hi> + <hi rendition="#i">e</hi>,</cell>
                  <cell><hi rendition="#i">b g</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">b</hi> = <hi rendition="#i">d</hi> + <hi rendition="#i">e</hi>,</cell>
                </row><lb/>
                <row>
                  <cell><hi rendition="#i">a c</hi> = 0,</cell>
                  <cell><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">c</hi> = <hi rendition="#i">f</hi>,</cell>
                  <cell>&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;,</cell>
                  <cell><hi rendition="#i">c d</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">f</hi>,</cell>
                  <cell><hi rendition="#i">c e</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">c</hi> = <hi rendition="#i">d</hi> + <hi rendition="#i">f</hi>,</cell>
                  <cell><hi rendition="#i">c f</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">d</hi>,</cell>
                  <cell><hi rendition="#i">c g</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">c</hi> = <hi rendition="#i">d</hi> + <hi rendition="#i">f</hi>,</cell>
                </row><lb/>
                <row>
                  <cell><hi rendition="#i">a d</hi> = 0,</cell>
                  <cell><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">d</hi> = 0,</cell>
                  <cell><hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#i">d</hi> = 0,</cell>
                  <cell>&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;,</cell>
                  <cell><hi rendition="#i">d e</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">d</hi>,</cell>
                  <cell><hi rendition="#i">d f</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">d</hi>,</cell>
                  <cell><hi rendition="#i">d g</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">d</hi>,</cell>
                </row><lb/>
                <row>
                  <cell><hi rendition="#i">a e</hi> = 0,</cell>
                  <cell><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">e</hi> = 0,</cell>
                  <cell><hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#i">e</hi> = <hi rendition="#i">e</hi>,</cell>
                  <cell><hi rendition="#i">d</hi><hi rendition="#sub">1</hi><hi rendition="#i">e</hi> = <hi rendition="#i">e</hi>,</cell>
                  <cell>&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;,</cell>
                  <cell><hi rendition="#i">e f</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">e</hi>,</cell>
                  <cell><hi rendition="#i">e g</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">e</hi>,</cell>
                </row><lb/>
                <row>
                  <cell><hi rendition="#i">a f</hi> = 0,</cell>
                  <cell><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">f</hi> = <hi rendition="#i">f</hi>,</cell>
                  <cell><hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#i">f</hi> = 0,</cell>
                  <cell><hi rendition="#i">d</hi><hi rendition="#sub">1</hi><hi rendition="#i">f</hi> = <hi rendition="#i">f</hi>,</cell>
                  <cell><hi rendition="#i">e</hi><hi rendition="#sub">1</hi><hi rendition="#i">f</hi> = <hi rendition="#i">f</hi>,</cell>
                  <cell>&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;,</cell>
                  <cell><hi rendition="#i">f g</hi><hi rendition="#sub">1</hi> = <hi rendition="#i">f</hi>,</cell>
                </row><lb/>
                <row>
                  <cell><hi rendition="#i">a g</hi> = 0,</cell>
                  <cell><hi rendition="#i">b</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi> = <hi rendition="#i">g</hi>,</cell>
                  <cell><hi rendition="#i">c</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi> = <hi rendition="#i">g</hi>,</cell>
                  <cell><hi rendition="#i">d</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi> = <hi rendition="#i">g</hi>,</cell>
                  <cell><hi rendition="#i">e</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi> = <hi rendition="#i">g</hi>,</cell>
                  <cell><hi rendition="#i">f</hi><hi rendition="#sub">1</hi><hi rendition="#i">g</hi> = <hi rendition="#i">g</hi>,</cell>
                  <cell>&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;&#x2014;.</cell>
                </row><lb/>
              </table>
              <fw place="bottom" type="sig"><hi rendition="#k">Schröder</hi>, Algebra der Logik. II. 9</fw><lb/>
            </p>
          </div>
        </div>
      </div>
    </body>
  </text>
</TEI>
[129/0153] § 37. Produkte und Summen von Grundbeziehungen. XI0. Multiplikationstabelle bei Ausschluss undeutiger Symbole. ———, a1 b = b = d + e, a1 c = c = d + f, a1 d = d, a1 e = e, a1 f = f, a1 g = g, a b1 = a, ——————, b c = d, b d = d, b e = e, b f = 0, b g = 0, a c1 = a, b1 c1 = a + g, ——————, c d = d, c e = 0, c f = f, c g = 0, a d1 = a, b1 d1 = b1 = a + f + g, c1 d1 = c1 = a + e + g, ——————, d e = 0, d f = 0, d g = 0, a e1 = a, b1 e1 = b1 = a + f + g, c1 e1 = a + g, d1 e1 = b1 = a + f + g, ——————, e f = 0, e g = 0, a f1 = a, b1 f1 = a + g, c1 f1 = c1 = a + e + g, d1 f1 = c1 = a + e + g, e1 f1 = a + d + g, ——————, f g = 0, a g1 = a, b1 g1 = a + f, c1 g1 = a + e, d1 g1 = a + e + f, e1 g1 = a + d + f, f1 g1 = a + d + e, ——————, ———, a1 b1 = f + g, a1 c1 = e + g, a1 d1 = e + f + g, a1 e1 = d + f + g, a1 f1 = d + e + g, a1 g1 = e + d + f, a b = 0, ——————, b c1 = e, b d1 = e, b e1 = d, b f1 = b = d + e, b g1 = b = d + e, a c = 0, b1 c = f, ——————, c d1 = f, c e1 = c = d + f, c f1 = d, c g1 = c = d + f, a d = 0, b1 d = 0, c1 d = 0, ——————, d e1 = d, d f1 = d, d g1 = d, a e = 0, b1 e = 0, c1 e = e, d1 e = e, ——————, e f1 = e, e g1 = e, a f = 0, b1 f = f, c1 f = 0, d1 f = f, e1 f = f, ——————, f g1 = f, a g = 0, b1 g = g, c1 g = g, d1 g = g, e1 g = g, f1 g = g, ——————. Schröder, Algebra der Logik. II. 9

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Language Resource Switchboard?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: https://www.deutschestextarchiv.de/schroeder_logik0201_1891
URL zu dieser Seite: https://www.deutschestextarchiv.de/schroeder_logik0201_1891/153
Zitationshilfe: Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 2, Abt. 1. Leipzig, 1891, S. 129. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/schroeder_logik0201_1891/153>, abgerufen am 15.07.2024.