§ 45. Besonderheiten des Aussagenkalkuls im Kontrast mit dem Gebietekalkul. Dilemma, Modus ponens und tollens, disjunktiver Schluss. Formeln gemischter Natur.
In der fünfzehnten Vorlesung haben wir den Aussagenkalkul als besondern Fall des Gebietekalkuls hervorgehoben. Alle Formeln des letzteren galten auch im erstern, aber nicht umgekehrt; der Aussagen- kalkul erwies sich als der formelreichere.
Dies ist nicht zu verwundern. Kann doch der Aussagenkalkul nichts anderes sein als der Gebietekalkul in Verbindung mit der ihm gemachten Auflage, dass die allgemeinen Gebietsymbole in demselben ledig- lich der Werte 0 und 1 fähig sein sollten!
So wenigstens insoweit man die Formeln desselben in's Auge fasst, die auch für Gebiete deutungsfähig erscheinen; dies erhellt aus dem An- blick der Formeln z) und e) des § 32. Freilich kommen dann auch noch Formeln im Aussagenkalkul hinzu, die im Gebietekalkul gar nicht inter- pretabel wären. Alle diese erwiesen sich als blosse Konsequenzen der Formel e) des § 32, aus welcher auch die vorhin genanuten hervorgingen.
Und fortgesetzt werden auch alle ferneren Eigentümlichkeiten des Aussagenkalkuls sich lediglich als Folgerungen dieser einen Annahme e) darstellen lassen. Genauer hätten wir also zu sagen: der Aussagenkalkul hebt sich aus dem Gebietekalkul hervor durch Hinzuziehung der Annahme § 32, e): (a = i) = a -- mitsamt ihren Konsequenzen -- zu den ohnehin gültigen Sätzen des letzteren.
Diese Annahme, jene Einschränkung, gestattet begreiflicherweise eine Menge von Folgerungen, die wenn sie fehlt, nicht gezogen werden können. Der Umstand schon, dass jedes Symbol nur entweder 0 oder 1 bedeuten dürfe, gibt dem Aussagenkalkul ein besonderes Gepräge, das dem allgemeinen Gebietekalkul, in welchem ausser 0 und 1 auch alle erdenklichen Zwischenwerte zwischen diesen beiden Grenzen zu- gelassen sind, abgehen wird.
Einundzwanzigste Vorlesung.
§ 45. Besonderheiten des Aussagenkalkuls im Kontrast mit dem Gebietekalkul. Dilemma, Modus ponens und tollens, disjunktiver Schluss. Formeln gemischter Natur.
In der fünfzehnten Vorlesung haben wir den Aussagenkalkul als besondern Fall des Gebietekalkuls hervorgehoben. Alle Formeln des letzteren galten auch im erstern, aber nicht umgekehrt; der Aussagen- kalkul erwies sich als der formelreichere.
Dies ist nicht zu verwundern. Kann doch der Aussagenkalkul nichts anderes sein als der Gebietekalkul in Verbindung mit der ihm gemachten Auflage, dass die allgemeinen Gebietsymbole in demselben ledig- lich der Werte 0 und 1 fähig sein sollten!
So wenigstens insoweit man die Formeln desselben in’s Auge fasst, die auch für Gebiete deutungsfähig erscheinen; dies erhellt aus dem An- blick der Formeln ζ) und η) des § 32. Freilich kommen dann auch noch Formeln im Aussagenkalkul hinzu, die im Gebietekalkul gar nicht inter- pretabel wären. Alle diese erwiesen sich als blosse Konsequenzen der Formel ε) des § 32, aus welcher auch die vorhin genanuten hervorgingen.
Und fortgesetzt werden auch alle ferneren Eigentümlichkeiten des Aussagenkalkuls sich lediglich als Folgerungen dieser einen Annahme ε) darstellen lassen. Genauer hätten wir also zu sagen: der Aussagenkalkul hebt sich aus dem Gebietekalkul hervor durch Hinzuziehung der Annahme § 32, ε): (a = i) = a — mitsamt ihren Konsequenzen — zu den ohnehin gültigen Sätzen des letzteren.
Diese Annahme, jene Einschränkung, gestattet begreiflicherweise eine Menge von Folgerungen, die wenn sie fehlt, nicht gezogen werden können. Der Umstand schon, dass jedes Symbol nur entweder 0 oder 1 bedeuten dürfe, gibt dem Aussagenkalkul ein besonderes Gepräge, das dem allgemeinen Gebietekalkul, in welchem ausser 0 und 1 auch alle erdenklichen Zwischenwerte zwischen diesen beiden Grenzen zu- gelassen sind, abgehen wird.
<TEI><text><body><divn="1"><pbfacs="#f0280"n="[256]"/><divn="2"><head><hirendition="#g">Einundzwanzigste Vorlesung</hi>.</head><lb/><divn="3"><head>§ 45. <hirendition="#b">Besonderheiten des Aussagenkalkuls im Kontrast mit dem<lb/>
Gebietekalkul. Dilemma, Modus ponens und tollens, disjunktiver<lb/>
Schluss. Formeln gemischter Natur.</hi></head><lb/><p>In der fünfzehnten Vorlesung haben wir den Aussagenkalkul als<lb/>
besondern Fall des Gebietekalkuls hervorgehoben. Alle Formeln des<lb/>
letzteren galten auch im erstern, aber nicht umgekehrt; der Aussagen-<lb/>
kalkul erwies sich als der formelreichere.</p><lb/><p>Dies ist nicht zu verwundern. Kann doch der Aussagenkalkul<lb/>
nichts anderes sein als der Gebietekalkul <hirendition="#i">in Verbindung mit der ihm<lb/>
gemachten Auflage</hi>, <hirendition="#i">dass die allgemeinen Gebietsymbole in demselben ledig-<lb/>
lich der Werte</hi> 0 <hirendition="#i">und</hi> 1 <hirendition="#i">fähig sein sollten!</hi></p><lb/><p>So wenigstens insoweit man die Formeln desselben in’s Auge fasst,<lb/>
die auch für Gebiete deutungsfähig erscheinen; dies erhellt aus dem An-<lb/>
blick der Formeln <hirendition="#i">ζ</hi>) und <hirendition="#i">η</hi>) des § 32. Freilich kommen dann auch noch<lb/>
Formeln im Aussagenkalkul hinzu, die im Gebietekalkul gar nicht inter-<lb/>
pretabel wären. Alle diese erwiesen sich als blosse Konsequenzen der<lb/>
Formel <hirendition="#i">ε</hi>) des § 32, aus welcher auch die vorhin genanuten hervorgingen.</p><lb/><p>Und fortgesetzt werden auch alle ferneren Eigentümlichkeiten des<lb/>
Aussagenkalkuls sich lediglich als Folgerungen dieser einen Annahme <hirendition="#i">ε</hi>)<lb/>
darstellen lassen. Genauer hätten wir also zu sagen: der Aussagenkalkul<lb/>
hebt sich aus dem Gebietekalkul hervor durch Hinzuziehung der Annahme<lb/>
§ 32, <hirendition="#i">ε</hi>):<lb/><hirendition="#c">(<hirendition="#i">a</hi> = i) = <hirendition="#i">a</hi></hi><lb/>— mitsamt ihren Konsequenzen — zu den ohnehin gültigen Sätzen des<lb/>
letzteren.</p><lb/><p>Diese Annahme, jene Einschränkung, gestattet begreiflicherweise<lb/>
eine Menge von Folgerungen, die wenn sie fehlt, nicht gezogen werden<lb/>
können. Der Umstand schon, dass jedes Symbol nur entweder 0 oder<lb/>
1 bedeuten dürfe, gibt dem Aussagenkalkul ein besonderes Gepräge,<lb/>
das dem allgemeinen Gebietekalkul, in welchem ausser 0 und 1 auch<lb/>
alle erdenklichen Zwischenwerte zwischen diesen beiden Grenzen zu-<lb/>
gelassen sind, abgehen wird.</p><lb/></div></div></div></body></text></TEI>
[[256]/0280]
Einundzwanzigste Vorlesung.
§ 45. Besonderheiten des Aussagenkalkuls im Kontrast mit dem
Gebietekalkul. Dilemma, Modus ponens und tollens, disjunktiver
Schluss. Formeln gemischter Natur.
In der fünfzehnten Vorlesung haben wir den Aussagenkalkul als
besondern Fall des Gebietekalkuls hervorgehoben. Alle Formeln des
letzteren galten auch im erstern, aber nicht umgekehrt; der Aussagen-
kalkul erwies sich als der formelreichere.
Dies ist nicht zu verwundern. Kann doch der Aussagenkalkul
nichts anderes sein als der Gebietekalkul in Verbindung mit der ihm
gemachten Auflage, dass die allgemeinen Gebietsymbole in demselben ledig-
lich der Werte 0 und 1 fähig sein sollten!
So wenigstens insoweit man die Formeln desselben in’s Auge fasst,
die auch für Gebiete deutungsfähig erscheinen; dies erhellt aus dem An-
blick der Formeln ζ) und η) des § 32. Freilich kommen dann auch noch
Formeln im Aussagenkalkul hinzu, die im Gebietekalkul gar nicht inter-
pretabel wären. Alle diese erwiesen sich als blosse Konsequenzen der
Formel ε) des § 32, aus welcher auch die vorhin genanuten hervorgingen.
Und fortgesetzt werden auch alle ferneren Eigentümlichkeiten des
Aussagenkalkuls sich lediglich als Folgerungen dieser einen Annahme ε)
darstellen lassen. Genauer hätten wir also zu sagen: der Aussagenkalkul
hebt sich aus dem Gebietekalkul hervor durch Hinzuziehung der Annahme
§ 32, ε):
(a = i) = a
— mitsamt ihren Konsequenzen — zu den ohnehin gültigen Sätzen des
letzteren.
Diese Annahme, jene Einschränkung, gestattet begreiflicherweise
eine Menge von Folgerungen, die wenn sie fehlt, nicht gezogen werden
können. Der Umstand schon, dass jedes Symbol nur entweder 0 oder
1 bedeuten dürfe, gibt dem Aussagenkalkul ein besonderes Gepräge,
das dem allgemeinen Gebietekalkul, in welchem ausser 0 und 1 auch
alle erdenklichen Zwischenwerte zwischen diesen beiden Grenzen zu-
gelassen sind, abgehen wird.
Informationen zur CAB-Ansicht
Diese Ansicht bietet Ihnen die Darstellung des Textes in normalisierter Orthographie.
Diese Textvariante wird vollautomatisch erstellt und kann aufgrund dessen auch Fehler enthalten.
Alle veränderten Wortformen sind grau hinterlegt. Als fremdsprachliches Material erkannte
Textteile sind ausgegraut dargestellt.
Schröder, Ernst: Vorlesungen über die Algebra der Logik. Bd. 2, Abt. 1. Leipzig, 1891, S. [256]. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/schroeder_logik0201_1891/280>, abgerufen am 10.12.2023.
Alle Inhalte dieser Seite unterstehen, soweit nicht anders gekennzeichnet, einer
Creative-Commons-Lizenz.
Die Rechte an den angezeigten Bilddigitalisaten, soweit nicht anders gekennzeichnet, liegen bei den besitzenden Bibliotheken.
Weitere Informationen finden Sie in den DTA-Nutzungsbedingungen.
Insbesondere im Hinblick auf die §§ 86a StGB und 130 StGB wird festgestellt, dass die auf
diesen Seiten abgebildeten Inhalte weder in irgendeiner Form propagandistischen Zwecken
dienen, oder Werbung für verbotene Organisationen oder Vereinigungen darstellen, oder
nationalsozialistische Verbrechen leugnen oder verharmlosen, noch zum Zwecke der
Herabwürdigung der Menschenwürde gezeigt werden.
Die auf diesen Seiten abgebildeten Inhalte (in Wort und Bild) dienen im Sinne des
§ 86 StGB Abs. 3 ausschließlich historischen, sozial- oder kulturwissenschaftlichen
Forschungszwecken. Ihre Veröffentlichung erfolgt in der Absicht, Wissen zur Anregung
der intellektuellen Selbstständigkeit und Verantwortungsbereitschaft des Staatsbürgers zu
vermitteln und damit der Förderung seiner Mündigkeit zu dienen.
Zitierempfehlung: Deutsches Textarchiv. Grundlage für ein Referenzkorpus der neuhochdeutschen Sprache. Herausgegeben von der Berlin-Brandenburgischen Akademie der Wissenschaften, Berlin 2023. URL: https://www.deutschestextarchiv.de/.