Anmelden (DTAQ) DWDS     dlexDB     CLARIN-D

Wolff, Christian von: Der Anfangs-Gründe Aller Mathematischen Wiessenschaften. Bd. 4. Halle (Saale), 1710.

Bild:
<< vorherige Seite

Anfangs-Gründe
Demnach ist AT = (m+1) (axm - xm+1) :, m
ax
m-1-(m-1) xm-x = (maxm-mxm+1 + axm-
axm+1 + maxm + mxm+1 + xm+-1):,maxm-1 - (m
-1)xm = axm+1:(maxm-1 - (m-1) xm).

Es sey ein Circul von dem anderen Geschlech-
te/ so ist m = 2/ also PT = (3ax2 - x3):
(2ax-3x2) und AT = ax2 : (2ax-3x2) &c.

Der 7. Zusatz.

419. Jn der Ellipsi ist ay2 = abx-bx2 (§.
224) und daher
2aydy = abdx-2bxdx
dx
= 2aydy : (ab-2bx)

PT = ydx : dy = 2ay2dy : (ab-2bx) dy =
2ay2 : (ab-2bx) = (2abx-2bx2) : (ab-2bx).

Daher ist AT = (2abx-2bx2) : (ab-2bx)-x
= (2abx-2bx2-abx + 2bx2) : (ab-2ax) = ax:
(a-2x)
wie im Circul.

Der 8. Zusatz.

420. Für unendliche Ellipses ist (§. 242)
aym+n = bxm (a-x)n und daher
(m+n)aym+n-1 dy = mbxm-1(a-x)n dx-nbxm
(a-x)n-1dx
(m+n)aym+n-1 dy : (mbxm-1 (a-x)n-nbxm (a-
x)n-1) = dx
PT = ydx:dy = (m+n)aym+n : (mbxm-1 (a-x)n
-nbxm (a-x)n-1) = (mbxm(a-x)n + nbxm

(a-x)

Anfangs-Gruͤnde
Demnach iſt AT = (m+1) (axm - xm+1) :, m
ax
m-1-(m-1) xm-x = (maxm-mxm+1 + axm-
axm+1 + maxm + mxm+1 + xm+-1):,maxm-1 - (m
-1)xm = axm+1:(maxm-1 - (m-1) xm).

Es ſey ein Circul von dem anderen Geſchlech-
te/ ſo iſt m = 2/ alſo PT = (3ax2 - x3):
(2ax-3x2) und AT = ax2 : (2ax-3x2) &c.

Der 7. Zuſatz.

419. Jn der Ellipſi iſt ay2 = abx-bx2 (§.
224) und daher
2aydy = abdx-2bxdx
dx
= 2aydy : (ab-2bx)

PT = ydx : dy = 2ay2dy : (ab-2bx) dy =
2ay2 : (ab-2bx) = (2abx-2bx2) : (ab-2bx).

Daher iſt AT = (2abx-2bx2) : (ab-2bx)-x
= (2abx-2bx2-abx + 2bx2) : (ab-2ax) = ax:
(a-2x)
wie im Circul.

Der 8. Zuſatz.

420. Fuͤr unendliche Ellipſes iſt (§. 242)
aym+n = bxm (a-x)n und daher
(m+n)aym+n-1 dy = mbxm-1(a-x)n dx-nbxm
(a-x)n-1dx
(m+n)aym+n-1 dy : (mbxm-1 (a-x)n-nbxm (a-
x)n-1) = dx
PT = ydx:dy = (m+n)aym+n : (mbxm-1 (a-x)n
-nbxm (a-x)n-1) = (mbxm(a-x)n + nbxm

(a-x)
<TEI>
  <text>
    <body>
      <div n="1">
        <div n="2">
          <div n="3">
            <div n="4">
              <div n="5">
                <p><pb facs="#f0256" n="254"/><fw place="top" type="header"><hi rendition="#b">Anfangs-Gru&#x0364;nde</hi></fw><lb/>
Demnach i&#x017F;t <hi rendition="#aq">AT = (<hi rendition="#i">m</hi>+1) (<hi rendition="#i">ax</hi><hi rendition="#sup"><hi rendition="#i">m</hi></hi> - <hi rendition="#i">x</hi><hi rendition="#sup"><hi rendition="#i">m</hi>+1</hi>) :, <hi rendition="#i">m<lb/>
ax</hi><hi rendition="#sup"><hi rendition="#i">m</hi>-1</hi>-(<hi rendition="#i">m</hi>-1) <hi rendition="#i">x</hi><hi rendition="#sup"><hi rendition="#i">m</hi></hi>-<hi rendition="#i">x</hi> = (<hi rendition="#i">max</hi><hi rendition="#sup"><hi rendition="#i">m</hi></hi>-<hi rendition="#i">mx</hi><hi rendition="#sup"><hi rendition="#i">m</hi>+1</hi> + <hi rendition="#i">ax</hi><hi rendition="#sup"><hi rendition="#i">m</hi></hi>-<lb/><hi rendition="#i">ax</hi><hi rendition="#sup"><hi rendition="#i">m</hi>+1</hi> + <hi rendition="#i">max</hi><hi rendition="#sup"><hi rendition="#i">m</hi></hi> + <hi rendition="#i">mx</hi><hi rendition="#sup"><hi rendition="#i">m</hi>+1</hi> + <hi rendition="#i">x</hi><hi rendition="#sup"><hi rendition="#i">m</hi>+-1</hi>):,<hi rendition="#i">max</hi><hi rendition="#sup"><hi rendition="#i">m</hi>-1</hi> - (<hi rendition="#i">m</hi><lb/>
-1)<hi rendition="#i">x</hi><hi rendition="#sup"><hi rendition="#i">m</hi></hi> = <hi rendition="#i">ax</hi><hi rendition="#sup"><hi rendition="#i">m</hi>+1:(<hi rendition="#i">max</hi><hi rendition="#sub"><hi rendition="#i">m</hi></hi>-1</hi> - (<hi rendition="#i">m</hi>-1) <hi rendition="#i">x</hi><hi rendition="#sub"><hi rendition="#i">m</hi></hi>).</hi><lb/>
Es &#x017F;ey ein Circul von dem anderen Ge&#x017F;chlech-<lb/><hi rendition="#et">te/ &#x017F;o i&#x017F;t <hi rendition="#aq"><hi rendition="#i">m</hi></hi> = 2/ al&#x017F;o <hi rendition="#aq">PT = (3<hi rendition="#i">ax</hi><hi rendition="#sup">2</hi> - <hi rendition="#i">x</hi><hi rendition="#sup">3</hi>):</hi></hi><lb/>
(2<hi rendition="#aq"><hi rendition="#i">ax</hi>-3<hi rendition="#i">x</hi><hi rendition="#sup">2</hi>)</hi> und <hi rendition="#aq">AT = <hi rendition="#i">ax</hi><hi rendition="#sup">2</hi> : (2<hi rendition="#i">ax</hi>-3<hi rendition="#i">x</hi><hi rendition="#sup">2</hi>) &amp;c.</hi></p>
              </div><lb/>
              <div n="5">
                <head> <hi rendition="#b">Der 7. Zu&#x017F;atz.</hi> </head><lb/>
                <p>419. Jn der <hi rendition="#aq">Ellip&#x017F;i</hi> i&#x017F;t <hi rendition="#aq"><hi rendition="#i">ay</hi><hi rendition="#sup">2</hi> = <hi rendition="#i">abx-bx</hi><hi rendition="#sup">2</hi></hi> (§.<lb/>
224) und daher<lb/><hi rendition="#et"><hi rendition="#aq"><hi rendition="#u">2<hi rendition="#i">aydy = abdx</hi>-2<hi rendition="#i">b</hi>x<hi rendition="#i">dx<lb/>
dx</hi> = 2<hi rendition="#i">aydy</hi> : (<hi rendition="#i">ab</hi>-2<hi rendition="#i">bx</hi>)</hi></hi></hi><lb/><hi rendition="#aq">PT = <hi rendition="#i">ydx : dy</hi> = 2<hi rendition="#i">ay</hi><hi rendition="#sup">2</hi><hi rendition="#i">dy</hi> : (<hi rendition="#i">ab</hi>-2<hi rendition="#i">bx</hi>) <hi rendition="#i">dy</hi> =<lb/>
2<hi rendition="#i">a</hi>y<hi rendition="#sup">2</hi> : (<hi rendition="#i">ab</hi>-2<hi rendition="#i">bx</hi>) = (2<hi rendition="#i">abx</hi>-2<hi rendition="#i">bx</hi><hi rendition="#sup">2</hi>) : (<hi rendition="#i">ab</hi>-2<hi rendition="#i">bx</hi>).</hi><lb/>
Daher i&#x017F;t <hi rendition="#aq">AT = (2<hi rendition="#i">abx</hi>-2<hi rendition="#i">bx</hi><hi rendition="#sup">2</hi>) : (<hi rendition="#i">ab</hi>-2<hi rendition="#i">bx</hi>)-<hi rendition="#i">x</hi><lb/>
= (2<hi rendition="#i">abx</hi>-2<hi rendition="#i">bx</hi><hi rendition="#sup">2</hi>-<hi rendition="#i">abx</hi> + 2<hi rendition="#i">bx</hi><hi rendition="#sup">2</hi>) : (<hi rendition="#i">ab</hi>-2<hi rendition="#i">ax</hi>) = <hi rendition="#i">ax</hi>:<lb/>
(<hi rendition="#i">a</hi>-2<hi rendition="#i">x</hi>)</hi> wie im Circul.</p>
              </div><lb/>
              <div n="5">
                <head> <hi rendition="#b">Der 8. Zu&#x017F;atz.</hi> </head><lb/>
                <p>420. Fu&#x0364;r unendliche <hi rendition="#aq">Ellip&#x017F;es</hi> i&#x017F;t (§. 242)<lb/><hi rendition="#aq"><hi rendition="#u"><hi rendition="#i">ay</hi><hi rendition="#sup"><hi rendition="#i">m+n</hi></hi> = <hi rendition="#i">bx</hi><hi rendition="#sup"><hi rendition="#i">m</hi></hi> (<hi rendition="#i">a-x</hi>)<hi rendition="#sup"><hi rendition="#i">n</hi></hi></hi></hi> und daher<lb/>
(<hi rendition="#aq"><hi rendition="#i">m+n</hi>)<hi rendition="#i">ay</hi><hi rendition="#sup"><hi rendition="#i">m+n</hi>-1</hi><hi rendition="#i">dy = mbx</hi><hi rendition="#sup"><hi rendition="#i">m</hi>-1</hi>(<hi rendition="#i">a-x</hi>)<hi rendition="#sup"><hi rendition="#i">n</hi></hi><hi rendition="#i">dx-nbx</hi><hi rendition="#sub"><hi rendition="#i">m</hi></hi><lb/><hi rendition="#et"><hi rendition="#u">(<hi rendition="#i">a-x</hi>)<hi rendition="#sup"><hi rendition="#i">n</hi>-1</hi><hi rendition="#i">dx</hi></hi></hi><lb/>
(<hi rendition="#i">m+n</hi>)<hi rendition="#i">ay</hi><hi rendition="#sup"><hi rendition="#i">m+n</hi>-1</hi> <hi rendition="#i">dy</hi> : (<hi rendition="#i">mbx</hi><hi rendition="#sup"><hi rendition="#i">m</hi>-1</hi> (<hi rendition="#i">a-x</hi>)<hi rendition="#sup"><hi rendition="#i">n</hi></hi>-<hi rendition="#i">nbx</hi><hi rendition="#sup"><hi rendition="#i">m</hi></hi> (<hi rendition="#i">a</hi>-<lb/><hi rendition="#et"><hi rendition="#u"><hi rendition="#i">x</hi>)<hi rendition="#sup"><hi rendition="#i">n</hi>-1</hi>) = <hi rendition="#i">dx</hi></hi></hi><lb/>
PT = <hi rendition="#i">ydx:dy</hi> = (<hi rendition="#i">m+n</hi>)<hi rendition="#i">ay</hi><hi rendition="#sup"><hi rendition="#i">m+n</hi></hi> : (<hi rendition="#i">mbx</hi><hi rendition="#sup"><hi rendition="#i">m</hi>-1</hi> (<hi rendition="#i">a-x</hi>)<hi rendition="#sub"><hi rendition="#i">n</hi></hi><lb/><hi rendition="#et"><hi rendition="#i">-nbx</hi><hi rendition="#sup"><hi rendition="#i">m</hi></hi> (<hi rendition="#i">a-x</hi>)<hi rendition="#sup"><hi rendition="#i">n</hi>-1</hi>) = (<hi rendition="#i">mbx</hi><hi rendition="#sup"><hi rendition="#i">m</hi></hi>(<hi rendition="#i">a-x</hi>)<hi rendition="#sup"><hi rendition="#i">n</hi></hi> + <hi rendition="#i">nbx</hi><hi rendition="#sub"><hi rendition="#i">m</hi></hi></hi></hi><lb/>
<fw place="bottom" type="catch"><hi rendition="#aq"><hi rendition="#i">(a-x)</hi></hi></fw><lb/></p>
              </div>
            </div>
          </div>
        </div>
      </div>
    </body>
  </text>
</TEI>
[254/0256] Anfangs-Gruͤnde Demnach iſt AT = (m+1) (axm - xm+1) :, m axm-1-(m-1) xm-x = (maxm-mxm+1 + axm- axm+1 + maxm + mxm+1 + xm+-1):,maxm-1 - (m -1)xm = axm+1:(maxm-1 - (m-1) xm). Es ſey ein Circul von dem anderen Geſchlech- te/ ſo iſt m = 2/ alſo PT = (3ax2 - x3): (2ax-3x2) und AT = ax2 : (2ax-3x2) &c. Der 7. Zuſatz. 419. Jn der Ellipſi iſt ay2 = abx-bx2 (§. 224) und daher 2aydy = abdx-2bxdx dx = 2aydy : (ab-2bx) PT = ydx : dy = 2ay2dy : (ab-2bx) dy = 2ay2 : (ab-2bx) = (2abx-2bx2) : (ab-2bx). Daher iſt AT = (2abx-2bx2) : (ab-2bx)-x = (2abx-2bx2-abx + 2bx2) : (ab-2ax) = ax: (a-2x) wie im Circul. Der 8. Zuſatz. 420. Fuͤr unendliche Ellipſes iſt (§. 242) aym+n = bxm (a-x)n und daher (m+n)aym+n-1 dy = mbxm-1(a-x)n dx-nbxm (a-x)n-1dx (m+n)aym+n-1 dy : (mbxm-1 (a-x)n-nbxm (a- x)n-1) = dx PT = ydx:dy = (m+n)aym+n : (mbxm-1 (a-x)n -nbxm (a-x)n-1) = (mbxm(a-x)n + nbxm (a-x)

Suche im Werk

Hilfe

Informationen zum Werk

Download dieses Werks

XML (TEI P5) · HTML · Text
TCF (text annotation layer)
TCF (tokenisiert, serialisiert, lemmatisiert, normalisiert)
XML (TEI P5 inkl. att.linguistic)

Metadaten zum Werk

TEI-Header · CMDI · Dublin Core

Ansichten dieser Seite

Voyant Tools ?

Language Resource Switchboard?

Feedback

Sie haben einen Fehler gefunden? Dann können Sie diesen über unsere Qualitätssicherungsplattform DTAQ melden.

Kommentar zur DTA-Ausgabe

Dieses Werk wurde gemäß den DTA-Transkriptionsrichtlinien im Double-Keying-Verfahren von Nicht-Muttersprachlern erfasst und in XML/TEI P5 nach DTA-Basisformat kodiert.




Ansicht auf Standard zurückstellen

URL zu diesem Werk: https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710
URL zu dieser Seite: https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710/256
Zitationshilfe: Wolff, Christian von: Der Anfangs-Gründe Aller Mathematischen Wiessenschaften. Bd. 4. Halle (Saale), 1710. , S. 254. In: Deutsches Textarchiv <https://www.deutschestextarchiv.de/wolff_anfangsgruende04_1710/256>, abgerufen am 30.04.2024.